首页> 外文会议>Workshop on multiword expressions: from theory to application. >Opinion Summarization with Integer Linear Programming Formulation for Sentence Extraction and Ordering
【24h】

Opinion Summarization with Integer Linear Programming Formulation for Sentence Extraction and Ordering

机译:整数线性规划公式用于句子抽取和排序的观点总结

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a novel algorithm for opinion summarization that takes ac-count of content and coherence, simulta-neously. We consider a summary as a se-quence of sentences and directly acquire the optimum sequence from multiple re-view documents by extracting and order-ing the sentences. We achieve this with a novel Integer Linear Programming (ILP) formulation. Our proposed formulation is a powerful mixture of the Maximum Cov-erage Problem and the Traveling Sales-man Problem, and is widely applicable to text generation and summarization tasks. We score each candidate sequence accord-ing to its content and coherence. Since our research goal is to summarize reviews, the content score is defined by opinions and the coherence score is developed in training against the review document cor-pus. We evaluate our method using the reviews of commodities and restaurants. Our method outperforms existing opinion summarizers as indicated by its ROUGE score. We also report the results of human readability experiments.
机译:在本文中,我们提出了一种新颖的意见汇总算法,该算法同时考虑了内容和连贯性。我们将摘要视为句子的序列,并通过提取和排序句子从多个重新审阅文档中直接获取最佳序列。我们通过一种新颖的整数线性规划(ILP)公式实现了这一目标。我们提出的公式是最大Cov-erage问题和旅行商问题的强有力的结合,并且广泛适用于文本生成和摘要任务。我们根据其内容和连贯性对每个候选序列进行评分。由于我们的研究目标是总结评论,因此内容分数是由意见定义的,而连贯分数是通过针对评论文件的训练进行开发的。我们使用商品和餐厅的评论来评估我们的方法。如其ROUGE得分所示,我们的方法优于现有的意见摘要。我们还报告了人类可读性实验的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号