首页> 外文会议>Workshop on cognitive aspects of computational language learning >Bayesian inference as a cross-linguistic word segmentation strategy: Always learning useful things
【24h】

Bayesian inference as a cross-linguistic word segmentation strategy: Always learning useful things

机译:贝叶斯推理作为一种跨语言分词策略:始终学习有用的东西

获取原文
获取原文并翻译 | 示例

摘要

Statistical learning has been proposed as one of the earliest strategies infants could use to segment words out of their native language because it does not rely on language-specific cues that must be derived from existing knowledge of the words in the language. Statistical word segmentation strategies using Bayesian inference have been shown to be quite successful for English (Goldwater et al. 2009), even when cognitively inspired processing constraints are integrated into the inference process (Pearl et al. 2011, Phillips & Pearl 2012). Here we test this kind of strategy on child-directed speech from seven languages to evaluate its effectiveness cross-linguistically, with the idea that a viable strategy should succeed in each case. We demonstrate that Bayesian inference is indeed a viable cross-linguistic strategy, provided the goal is to identify useful units of the language, which can range from sub-word morphology to whole words to meaningful word combinations.
机译:已经提出统计学习作为婴儿可以用来将单词从其母语中分割出来的最早策略之一,因为它不依赖于必须从该语言中的单词的现有知识中得出的特定于语言的提示。使用贝叶斯推理的统计分词策略已被证明对英语非常成功(Goldwater等,2009),即使将认知启发的处理约束整合到推理过程中(Pearl等,2011; Phillips&Pearl 2012)。在这里,我们以7种语言针对儿童的语音测试了这种策略,以跨语言评估其效果,并提出了可行的策略应能在每种情况下成功的想法。我们证明了贝叶斯推理确实是一种可行的跨语言策略,只要目标是识别语言的有用单元,其范围可以从子词形态到整个词再到有意义的词组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号