首页> 外文会议>Web Information Systems - WISE 2006 Workshops; Lecture Notes in Computer Science; 4256 >Mining Maximum Frequent Access Patterns in Web Logs Based on Unique Labeled Tree
【24h】

Mining Maximum Frequent Access Patterns in Web Logs Based on Unique Labeled Tree

机译:基于唯一标记树挖掘Web日志中的最大频繁访问模式

获取原文
获取原文并翻译 | 示例

摘要

Discovering user's Frequent Access Patterns is one of research hot-spots in mining web logs. A novel apriori-based algorithm named s-Tree is proposed for mining maximum Frequent Access Patterns. The main contributions of s-Tree algorithm are the following. Firstly, a unique labeled tree is used to represent user session, which enables us to mine the maximum forward reference transaction and the users' preferred access path. Secondly, an improved method of calculating support based on impact factor of content pages first, which helps us to discover some more important and interesting patterns than normal methods. Thirdly, two special strategies are adopted to reduce overheads of joining frequent patterns. Finally, experiments show that s-Tree algorithm is scalable, and is more efficient than previous graph-based structure pattern mining algorithms such as AGM and FSG.
机译:发现用户的频繁访问模式是挖掘Web日志中的研究热点之一。提出了一种新的基于先验的算法s-Tree,用于挖掘最大的频繁访问模式。 s-Tree算法的主要贡献如下。首先,使用唯一的标记树表示用户会话,这使我们能够挖掘最大的前向参考交易记录和用户的首选访问路径。其次,一种改进的基于内容页面影响因子的支持度计算方法,可以帮助我们发现比常规方法更重要,更有趣的模式。第三,采取了两种特殊的策略来减少加入频繁模式的开销。最后,实验表明,s-Tree算法具有可伸缩性,并且比以前的基于图的结构模式挖掘算法(例如AGM和FSG)更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号