首页> 外文会议>Wavelets XI >Monochrome and Color Image Denoising Using Neighboring Dependency and Data Correlation
【24h】

Monochrome and Color Image Denoising Using Neighboring Dependency and Data Correlation

机译:使用邻近相关性和数据相关性的单色和彩色图像降噪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two approaches for image denoising that take advantages of neighboring dependency in the wavelet domain are studied. The first approach is to take into account the higher order statistical coupling between neighboring wavelet coefficients and their corresponding coefficients in the parent level. The second is based on multivariate statistical modeling. The estimation of the clean coefficients is obtained by a general rule using Bayesian approach. Various estimation expressions can be obtained by a priori probability distribution, called multivariate generalized Gaussian distribution (MGGD). The experimental results show that both of our methods give comparatively higher peak signal to noise ratio (PSNR) as well as little visual artifact for monochrome images. In addition, we extend our approaches to a denoising algorithm for color image that has multiple color components. The proposed color denoising algorithm is a framework to consider the correlations between color components yet using the existing monochrome denoising method without modification. Denoising results in this framework give noticeable better improvement than in the case when the correlation between color components is not considered.
机译:本文研究了两种在小波域中利用邻域相关性的图像去噪方法。第一种方法是考虑相邻子波系数与其父级中其对应系数之间的高阶统计耦合。第二个是基于多元统计模型。清洁系数的估计是使用贝叶斯方法通过一般规则获得的。可以通过先验概率分布(称为多元广义高斯分布(MGGD))获得各种估计表达式。实验结果表明,我们的两种方法均能提供较高的峰值信噪比(PSNR),并且单色图像的视觉伪影很少。另外,我们将方法扩展到具有多个颜色分量的彩色图像的去噪算法。所提出的颜色去噪算法是一种框架,该框架考虑了颜色成分之间的相关性,并且使用了现有的单色去噪方法而没有进行任何修改。与不考虑颜色分量之间的相关性的情况相比,此框架中的降噪结果具有明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号