首页> 外文会议>Wavelets and sparsity XVII >Extending Classical Multirate Signal Processing Theory to Graphs
【24h】

Extending Classical Multirate Signal Processing Theory to Graphs

机译:将经典的多速率信号处理理论扩展到图形

获取原文
获取原文并翻译 | 示例

摘要

A variety of different areas consider signals that are defined over graphs. Motivated by the advancements in graph signal processing, this study first reviews some of the recent results on the extension of classical multirate signal processing to graphs. In these results, graphs are allowed to have directed edges. The possibly non-symmetric adjacency matrix A is treated as the graph operator. These results investigate the fundamental concepts for multirate processing of graph signals such as noble identities, aliasing, and perfect reconstruction (PR). It is shown that unless the graph satisfies some conditions, these concepts cannot be extended to graph signals in a simple manner. A structure called M-Block cyclic structure is shown to be sufficient to generalize the results for bipartite graphs on two-channels to M-channel filter banks. Many classical multirate ideas can be extended to graphs due to the unique eigenstructure of M-Block cyclic graphs. For example, the PR condition for filter banks on these graphs is identical to PR in classical theory, which allows the use of well-known filter bank design techniques. In order to utilize these results, the adjacency matrix of an M-Block cyclic graph should be given in the correct permutation. In the final part, this study proposes a spectral technique to identify the hidden M-Block cyclic structure from a graph with noisy edges whose adjacency matrix is given under a random permutation. Numerical simulation results show that the technique can recover the underlying M-Block structure in the presence of random addition and deletion of the edges.
机译:各种不同的区域都考虑在图形上定义的信号。受图信号处理技术进步的推动,本研究首先回顾了有关将经典多速率信号处理扩展到图的最新结果。在这些结果中,允许图形具有有向边。可能的非对称邻接矩阵A被视为图算子。这些结果研究了图形信号的多速率处理的基本概念,例如贵族身份,混叠和完美重构(PR)。结果表明,除非图形满足某些条件,否则这些概念无法扩展为以简单的方式图形化信号。示出了一种称为M块循环结构的结构,足以将两通道的二分图的结果推广到M通道滤波器组。由于M块循环图的独特特征结构,许多经典的多速率思想可以扩展到图。例如,这些图上滤波器组的PR条件与经典理论中的PR相同,这允许使用众所周知的滤波器组设计技术。为了利用这些结果,应该以正确的排列给出M块循环图的邻接矩阵。在最后一部分中,这项研究提出了一种频谱技术,用于从带有噪声边缘的图(其邻接矩阵在随机排列下给出)中识别隐藏的M块循环结构。数值模拟结果表明,该技术可以在边缘随机添加和删除的情况下恢复潜在的M块结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号