【24h】

Ink normalization and beautification

机译:油墨归一化和美化

获取原文
获取原文并翻译 | 示例

摘要

Handwriting recognition is difficult because of the high variability of handwriting and because of segmentation errors. We propose an approach that reduces this variability without requiring letter segmentation. We build an ink extrema classifier which labels local minima of ink as {bottom, baseline, other} and maxima as {midline, top, other}. Despite the high variability of ink, the classifier is 86% accurate (with 0% rejection). We use the classifier information to normalize the ink. This is done by applying a "rubber sheet" warping followed by a "rubber rod" warping. Both warpings are computed using conjugate gradient methods. We display the normalization results on a few examples. This paper illustrates the pitfalls of ink normalization and "beautification ", when solved independently of letter recognition.
机译:由于手写的高度可变性和分段错误,很难识别手写。我们提出了一种无需字母分割即可减少这种可变性的方法。我们建立了一个墨水极值分类器,将墨水的局部最小值标记为{底部,基线,其他},将最大值标记为{中线,顶部,其他}。尽管墨水变化较大,但分类器的准确度为86%(不合格率为0%)。我们使用分类器信息对墨水进行归一化。这是通过先施加“橡胶板”翘曲,再施加“橡胶棒”翘曲来完成的。两种变形均使用共轭梯度法计算。我们在几个示例上显示归一化结果。本文说明了与字母识别无关地解决的墨水归一化和“美化”的陷阱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号