【24h】

Generalized In-Scale Motion Compensation Framework for Spatial Scalable Video Coding

机译:用于空间可伸缩视频编码的通用比例运动补偿框架

获取原文
获取原文并翻译 | 示例

摘要

In existing video coding schemes with spatial scalability based on pyramid frame representation, such as the ongoing H.264/MPEG-4 SVC (scalable video coding) standard, video frame at a high resolution is mainly predicted either from the lower-resolution image of the same frame or from the temporal neighboring frames at the same resolution. Most of these prediction techniques fail to exploit the two correlations simultaneously and efficiently. This paper extends the in-scale prediction technique developed for wavelet video coding to a generalized in-scale motion compensation framework for H.264/MPEG-4 SVC. In this framework, for a video frame at a high resolution layer, the lowpass content is predicted from the information already coded in lower resolution layer, but the highpass content is predicted by exploiting the neighboring frames at current resolution. In this way, both the cross-resolution correlation and temporal correlation are exploited simultaneously, which leads to much higher efficiency in prediction. Preliminary experimental results demonstrate that the proposed framework improves the spatial scalability performance of current H.264/MPEG-4 SVC. The improvement is significant especially for high-fidelity video coding. In addition, another advantage over wavelet-based in-scale scheme is achieved that the proposed framework can support arbitrary down-sampling and up-sampling filters.
机译:在基于金字塔帧表示的具有空间可伸缩性的现有视频编码方案(例如正在进行的H.264 / MPEG-4 SVC(可缩放视频编码)标准)中,高分辨率的视频帧主要是从图像的较低分辨率图像中预测的同一帧或来自相同时间分辨率的时间相邻帧。这些预测技术大多数都无法同时有效地利用这两个相关性。本文将针对小波视频编码开发的比例缩放预测技术扩展到了H.264 / MPEG-4 SVC的通用比例缩放运动补偿框架。在此框架中,对于高分辨率层的视频帧,低通含量是根据已经在较低分辨率层中编码的信息预测的,但是高通含量是通过利用当前分辨率的相邻帧来预测的。以此方式,同时利用了交叉分辨率相关性和时间相关性,这导致了更高的预测效率。初步实验结果表明,该框架提高了当前H.264 / MPEG-4 SVC的空间可扩展性。该改进尤其对于高保真视频编码而言是重要的。此外,与基于小波的比例缩放方案相比,它还具有另一个优点,即所提出的框架可以支持任意的下采样和上采样滤波器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号