首页> 外文会议>Visual Communications and Image Processing 2005 pt.2 >Fractal dimension computation with the Parzon window and its application in target detection
【24h】

Fractal dimension computation with the Parzon window and its application in target detection

机译:Parzon窗口的分形维数计算及其在目标检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

The automatic target detection under natural backgrounds is an important topic in the field of automatic target recognition. Fractal dimension is generally related to the roughness of the surface. The fractal dimension of the man-made object is usually lower than the background's because mostly it is smoother than natural background. This feature can be used to detect the target automatically. In the computing of the fractal dimension, the irregular values often appear at the boundary of the different textures in the image. This phenomenon can be called 'edge effect'. It may result in the difficulty in the followed image processing such as thresholding and cluster segmentation. The main reason of the edge effect is the same contribution of the every pixel in the neighborhood of the pixel where the fractal dimension being calculated. In this paper, in order to weaken the 'edge effect' in the fractal dimension computation, a 2-D Parzon window is designed. The accuracy of fractal dimension calculated after multiplied by the Parzon window is discussed, and a new algorithm is proposed to apply in the automatic target detection. The proposed automatic target detection algorithm is adopted in the experiments in images under complex land or sea backgrounds. The correctly detection rate is above 95%. The robust of this algorithm is represented in the cases of the variety of the light, rotation, size changing and occlusion of the target.
机译:自然背景下的自动目标检测是自动目标识别领域的重要课题。分形尺寸通常与表面的粗糙度有关。人造物体的分形维数通常低于背景的分形维数,因为人造物体的分形维数通常比自然背景光滑。此功能可用于自动检测目标。在分形维数的计算中,不规则值通常出现在图像中不同纹理的边界处。这种现象可以称为“边缘效应”。这可能会导致后续图像处理(例如阈值化和聚类分割)的困难。边缘效应的主要原因是计算分形维数的像素附近每个像素的贡献相同。在本文中,为了减弱分形维数计算中的“边缘效应”,设计了二维Parzon窗口。讨论了乘以Parzon窗后计算得到的分形维数的精度,并提出了一种新的算法应用于自动目标检测。在复杂陆地或海洋背景下的图像实验中,采用了本文提出的自动目标检测算法。正确检测率在95%以上。这种算法的鲁棒性体现在目标的光线变化,旋转,大小变化和遮挡情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号