首页> 外文会议>Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009. VECIMS '09 >Gait recognition based on multiple views fusion of wavelet descriptor and human skeleton model
【24h】

Gait recognition based on multiple views fusion of wavelet descriptor and human skeleton model

机译:基于小波描述子与人体骨架模型多视角融合的步态识别

获取原文

摘要

Gait recognition is a relatively new subfield in biometric recognition, which attempts to recognize people from the way they walk or run. This paper discusses silhouette-based feature descriptor. Human silhouette geometry is generated by boundary tracking approach and resampled to a normalized format. Boundary-centroid distance is proposed to describe gait modality. Then, we apply wavelet transform to boundary-centroid distance, and extract wavelet descriptor. At the same time, we obtain the human skeleton model and extract bodys dynamic parameters to express gait modality. We carry out human identification based on SVM using the two kinds of gait feature. The performances based on the two features are compared. Multiple feature fusion and multiple views fusion are carried out and the recognition results demonstrate that the performance of multiple features and multiple views recognition is better than any single feature and single view recognition.
机译:步态识别是生物识别中一个相对较新的子领域,该领域试图从人们的行走或奔跑方式中识别人们。本文讨论了基于轮廓的特征描述符。人体轮廓几何形状是通过边界跟踪方法生成的,并重新采样为标准化格式。提出了边界重心距离来描述步态。然后,将小波变换应用于边界质心距离,并提取小波描述符。同时,我们获得了人体骨骼模型并提取了人体动态参数来表达步态。我们使用两种步态特征基于SVM进行人身识别。比较了基于这两个功能的性能。进行了多特征融合和多视图融合,识别结果表明,多特征和多视图识别的性能优于任何单特征和单视图识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号