首页> 外文会议>Videometrics, range imaging, and applications XII; and Automated visual inspection >Combined spatial and spectral unmixing of image signals for material recognition in automated inspection systems
【24h】

Combined spatial and spectral unmixing of image signals for material recognition in automated inspection systems

机译:图像信号的空间和光谱组合解混,用于自动检查系统中的材料识别

获取原文
获取原文并翻译 | 示例

摘要

In optical inspection systems like automated bulk sorters, hyperspectral images in the near-infrared range are used more and more for identification and classification of materials. However, the possible applications are limited due to the coarse spatial resolution and low frame rate. By adding an additional multispectral image with higher spatial resolution, the missing spatial information can be acquired. In this paper, a method is proposed to fuse the hyperspectral and multispectral images by jointly unmixing the image signals. To this end, the linear mixing model, which is well-known from remote sensing applications, is extended to describe the spatial mixing of signals originating from different locations. Different spectral unmixing algorithms can be used to solve the problem. The benefit of the additional sensor and the properties of the unmixing process are presented and evaluated, as well as the quality of unmixing results obtained with different algorithms. With the proposed extended mixing model, an improved result can be achieved, as shown with different examples.
机译:在诸如自动批量分类器的光学检查系统中,越来越多地使用近红外范围的高光谱图像来识别和分类材料。但是,由于粗糙的空间分辨率和低帧速率,可能的应用受到了限制。通过添加具有更高空间分辨率的附加多光谱图像,可以获取丢失的空间信息。本文提出了一种通过联合解混图像信号来融合高光谱和多光谱图像的方法。为此,扩展了遥感应用中众所周知的线性混合模型,以描述源自不同位置的信号的空间混合。可以使用不同的频谱分解算法来解决该问题。提出并评估了附加传感器的好处和分解过程的特性,以及使用不同算法获得的分解结果的质量。使用建议的扩展混合模型,可以实现改进的结果,如不同示例所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号