【24h】

Detecting substeps in the rotary motors of F_0F_1-ATP synthase by Hidden Markov Models

机译:用隐马尔可夫模型检测F_0F_1-ATP合酶旋转电机中的子步

获取原文
获取原文并翻译 | 示例

摘要

F_0F_1-ATP synthase is the enzyme that provides the 'chemical energy currency' adenosine triphosphate, ATP, for living cells. The formation of ATP is accomplished by a stepwise internal rotation of subunits within the enzyme. We monitor subunit rotation by a single-molecule fluorescence resonance energy transfer (FRET) approach using two fluorophores specifically attached to the enzyme. To identify the stepsize of rotary movements by the motors of ATP synthase we simulated the confocal single-molecule FRET data of freely diffusing enzymes and developed a step finder algorithm based on 'Hidden Markov Models' (HMM). The HMM is able to find the proximity factors, P, for a three-level system and for a five-level system, and to unravel the dwell times of the simulated rotary movements. To identify the number of hidden states in the system, a likelihood parameter is calculated for the series of one-state to eight-state HMMs applied to each set of simulated data. Thereby, the basic prerequisites for the experimental single-molecule FRET data are defined that allow for discrimination between a 120° stepping mode or a 36° substep rotation mode for the proton-driven F_0 motor of ATP synthase.
机译:F_0F_1-ATP合酶是为活细胞提供“化学能通量”三磷酸腺苷ATP的酶。 ATP的形成通过酶中亚基的逐步内部旋转来完成。我们通过使用两个专门连接到酶的荧光团的单分子荧光共振能量转移(FRET)方法来监测亚基旋转。为了确定由ATP合酶驱动的旋转运动的步长大小,我们模拟了自由扩散酶的共聚焦单分子FRET数据,并开发了基于“隐马尔可夫模型”(HMM)的步进查找器算法。 HMM能够找到三层系统和五层系统的接近因子P,并解开模拟旋转运动的停留时间。为了识别系统中隐藏状态的数量,针对应用于每组模拟数据的一系列一状态到八状态HMM计算似然参数。因此,定义了实验单分子FRET数据的基本前提条件,从而可以区分质子驱动的ATP合酶F_0电机的120°步进模式或36°子步进旋转模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号