首页> 外文会议>Tuning the Optic Response of Photonic Bandgap Structures III >A Two Dimensional Silicon-based Photonic Crystal Microcavity Biosensor
【24h】

A Two Dimensional Silicon-based Photonic Crystal Microcavity Biosensor

机译:二维硅基光子晶体微腔生物传感器

获取原文
获取原文并翻译 | 示例

摘要

The optical properties of photonic bandgap (PBG) structures are highly sensitive to environmental variation. PBG structures thus are an attractive platform for biosensing applications. We experimentally demonstrate a label-free biosensor based on a two-dimensional (2-D) photonic crystal microcavity slab. The microcavity is fabricated on a silicon-on-insulator substrate and integrated with tapered ridge waveguides for light coupling. The Finite-Difference Time-Domain (FDTD) method is used to model the sensor. The resonance of the microcavity is designed to be around 1.58 μm. In order to capture the target biological materials, the internal surface of the photonic crystal is first functionalized. Binding of the targets is monitored by observing a red shift of the transmission resonance. The magnitude of the shift depends on the amount of material captured by the internal surface. Compared to 1-D PBG biosensors, 2-D devices require a smaller amount of target material and can accommodate larger targets. Experimental results are compared with the predictions obtained from the FDTD simulations.
机译:光子带隙(PBG)结构的光学特性对环境变化高度敏感。因此,PBG结构是用于生物传感应用的有吸引力的平台。我们实验证明基于二维(2-D)光子晶体微腔平板的无标记生物传感器。微腔被制造在绝缘体上硅衬底上,并与锥形脊形波导集成在一起以进行光耦合。有限差分时域(FDTD)方法用于对传感器建模。微腔的共振被设计为约1.58μm。为了捕获目标生物材料,首先对光子晶体的内表面进行功能化。通过观察传输共振的红移来监测靶标的结合。位移的大小取决于内表面捕获的材料量。与一维PBG生物传感器相比,二维设备需要较少量的目标材料,并且可以容纳更大的目标。将实验结果与通过FDTD仿真获得的预测结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号