【24h】

Comparison of Five Packet-Sampling-Based Methods for Detecting Elephant Flows

机译:五个基于包采样的大象流检测方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Detecting the abnormal behavior of the network through the network measurement is very important for network security. In high-speed networks, it is difficult and unrealistic to perform per-packet analysis with limited computing resources. Packet sampling can greatly reduce the consumption of computing resources. In this paper, we compare five measurement methods based on sampling from theory and experiment, which are mean method based on independent sampling (mean-IS), median method based on independent sampling (median-IS), mean method based on dependent sampling (mean-DS), median method based on dependent sampling (median-DS), and random sampling method (RP), respectively. We simulate the sampling process by Monte Carlo method to analyze the expectation and variance of the above-mentioned methods. Also, we use the five methods to detect elephant flows in real network traces. The experimental results show that mean-DS and RP are more effective than the other three methods. Finally, we propose an improved scheme that the independent sampling method is improved by incrementing sampling probability, so that the estimated results of mean-IS, mean-DS, and RP are nearly equal.
机译:通过网络测量来检测网络的异常行为对于网络安全非常重要。在高速网络中,用有限的计算资源执行每个数据包的分析既困难又不切实际。数据包采样可以大大减少计算资源的消耗。在本文中,我们从理论和实验上比较了五种基于抽样的测量方法,分别是基于独立抽样的均值方法(mean-IS),基于独立抽样的中值方法(median-IS),基于独立抽样的均值方法(均值-DS,基于相关抽样的中位数方法(median-DS)和随机抽样方法(RP)。我们通过蒙特卡罗方法模拟了采样过程,以分析上述方法的期望和方差。此外,我们使用五种方法来检测真实网络轨迹中的大象流。实验结果表明,均值DS和RP比其他三种方法更有效。最后,我们提出了一种改进的方案,即通过增加采样概率来改进独立采样方法,从而使均值IS,均值DS和RP的估计结果几乎相等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号