【24h】

StageFS: A Parallel File System Optimizing Metadata Performance for SSD Based Clusters

机译:StageFS:并行文件系统,用于优化基于SSD的群集的元数据性能

获取原文
获取原文并翻译 | 示例

摘要

Parallel file systems are important infrastructures for both cloud and high performance computing. The performance of metadata operations is critical to achieve high scalability in parallel file systems. Nevertheless, traditional parallel file systems are lack of scalable metadata service. To alleviate these problems, some previous research distributes metadata to separated large-scale clusters and uses write-optimized techniques like log-structured merge tree (LSM-tree) to store metadata. However, LSM-tree design does not consider the features of solid state drive devices (SSD) which are widely deployed in modern parallel computing systems. The design of using LSM-trees to store metadata has not explored the potential benefits of SSD devices. In this paper, we present StageFS, which is a parallel file system optimized for SSD based clusters. StageFS stores both the metadata and small files in LSM-trees for fast indexing. For larger files, the file blocks are separately stored to reduce the write amplifications. In addition, the parallel I/O feature of SSD devices is used to improve the performance of accessing directories and large files. To avoid frequent small writes, StageFS uses buffering to better utilize the bandwidth of SSD devices. Experimental results show that StageFS provides better performance in metadata operations (up to 21.28x) and small file access (1.92x to two orders of magnitude) compared with Ceph and HDFS.
机译:并行文件系统是云计算和高性能计算的重要基础架构。元数据操作的性能对于在并行文件系统中实现高可伸缩性至关重要。但是,传统的并行文件系统缺少可伸缩的元数据服务。为了缓解这些问题,一些先前的研究将元数据分配到了单独的大型集群中,并使用写优化技术(例如日志结构合并树(LSM-tree))来存储元数据。但是,LSM树设计未考虑在现代并行计算系统中广泛部署的固态驱动器设备(SSD)的功能。使用LSM树存储元数据的设计尚未探索SSD设备的潜在好处。在本文中,我们介绍了StageFS,这是一个针对基于SSD的群集进行了优化的并行文件系统。 StageFS将元数据和小文件都存储在LSM树中,以进行快速索引。对于较大的文件,将分别存储文件块以减少写放大。此外,SSD设备的并行I / O功能用于提高访问目录和大文件的性能。为了避免频繁的小写操作,StageFS使用缓冲来更好地利用SSD设备的带宽。实验结果表明,与Ceph和HDFS相比,StageFS在元数据操作(高达21.28x)和小文件访问(1.92x到两个数量级)方面提供了更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号