首页> 外文会议>TMS/DEVS Symposium on Theory of Modeling amp; Simulation, 2016 Spring Simulation Multi-Conference >An aspect oriented framework to applying Markov Chain Monte Carlo methods with dynamic models
【24h】

An aspect oriented framework to applying Markov Chain Monte Carlo methods with dynamic models

机译:面向方面的框架,将Markov Chain Monte Carlo方法与动态模型一起应用

获取原文
获取原文并翻译 | 示例

摘要

Both dynamic modeling and Bayesian Markov Chain Monte Carlo (MCMC) methods are established as increasingly popular approaches in their own domains. Dynamic modeling, although widely used to address complex situations, often suffers shortage of empirical data for model parameterization. Dynamic modelers thus use calibration to estimate parameters for which direct evidence is lacking. Unfortunately calibration suffers limitations in capturing the global (for multi-modal distribution) structure of parameter distributions, and a lack of a means of translating uncertainty in parameter estimates directly into uncertainty with respect to model outcomes. We present here a generic user-friendly aspect-based implementation of a theoretically grounded approach to address these limitations by combining Bayesian MCMC methods with dynamic models to estimate model parameters by sampling from joint posterior parameter distributions. The framework is enriched by a user interface to enable the parameter selection at run-time and an interactive runtime graphical visualization of parameter traceplots is generated during MCMC operation. To enable this, a probabilistic model - including a prior distribution and a likelihood function - needs to be specified within the dynamic model. The framework, when enabled, performs MCMC experiments using the dynamic and probabilistic models. We describe here the framework, experiments conducted, and the results obtained.
机译:动态建模方法和贝叶斯马尔可夫链蒙特卡洛(MCMC)方法都被确立为在各自领域中越来越流行的方法。动态建模虽然被广泛用于解决复杂的情况,但经常会缺乏用于模型参数化的经验数据。因此,动态建模人员使用校准来估计缺少直接证据的参数。不幸的是,校准在捕获参数分布的全局(对于多模式分布)结构方面受到限制,并且缺乏将参数估计中的不确定性直接转换为关于模型结果的不确定性的方法。我们在这里介绍一种通用的基于用户友好方面的理论基础方法,以解决这些限制,方法是将贝叶斯MCMC方法与动态模型相结合,以通过从联合后验参数分布中采样来估计模型参数。用户界面丰富了该框架,可在运行时进行参数选择,并且在MCMC操作期间会生成交互式的运行时图形化的参数跟踪图可视化。为此,需要在动态模型中指定一个概率模型-包括先验分布和似然函数。该框架启用后,将使用动态和概率模型执行MCMC实验。我们在这里描述框架,进行的实验以及获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号