首页> 外文会议>Three-dimensional and multidimensional microscopy: image acquisition and processing XX >Two approximations for the geometric model of signal amplification in an electron-multiplying charge-coupled device detector
【24h】

Two approximations for the geometric model of signal amplification in an electron-multiplying charge-coupled device detector

机译:电子倍增电荷耦合器件检测器中信号放大的几何模型的两个近似值

获取原文
获取原文并翻译 | 示例

摘要

The extraction of information from images acquired under low light conditions represents a common task in diverse disciplines. In single molecule microscopy, for example, techniques for superresolution image reconstruction depend on the accurate estimation of the locations of individual particles from generally low light images. In order to estimate a quantity of interest with high accuracy, however, an appropriate model for the image data is needed. To this end, we previously introduced a data model for an image that is acquired using the electron-multiplying charge-coupled device (EMCCD) detector, a technology of choice for low light imaging due to its ability to amplify weak signals significantly above its readout noise floor. Specifically, we proposed the use of a geometrically multiplied branching process to model the EMCCD detector's stochastic signal amplification. Geometric multiplication, however, can be computationally expensive and challenging to work with analytically. We therefore describe here two approximations for geometric multiplication that can be used instead. The high gain approximation is appropriate when a high level of signal amplification is used, a scenario which corresponds to the typical usage of an EMCCD detector. It is an accurate approximation that is computationally more efficient, and can be used to perform maximum likelihood estimation on EMCCD image data. In contrast, the Gaussian approximation is applicable at all levels of signal amplification, but is only accurate when the initial signal to be amplified is relatively large. As we demonstrate, it can importantly facilitate the analysis of an information-theoretic quantity called the noise coefficient.
机译:从弱光条件下获取的图像中提取信息代表着不同学科的共同任务。例如,在单分子显微镜中,用于超分辨率图像重建的技术取决于从通常的弱光图像中准确估计单个粒子的位置。但是,为了高精度地估计关注量,需要用于图像数据的适当模型。为此,我们先前介绍了使用电子倍增电荷耦合器件(EMCCD)检测器获取的图像数据模型,该技术是弱光成像的首选技术,因为它能够放大显着高于其读数的微弱信号。本底噪声。具体来说,我们建议使用几何乘法分支过程来对EMCCD检测器的随机信号放大进行建模。但是,几何乘法的计算量很大,并且分析工作难度很大。因此,我们在这里描述了可以用于替代的两个几何近似。当使用高电平信号放大时,高增益近似是合适的,这种情况对应于EMCCD检测器的典型用法。它是一种精确的近似值,在计算上更有效,可用于对EMCCD图像数据执行最大似然估计。相反,高斯近似适用于信号放大的所有级别,但是仅当要放大的初始信号相对较大时才是准确的。正如我们所展示的,它可以很重要地促进对称为噪声系数的信息理论量的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号