首页> 外文会议>The Third SANKEN international symposium on advanced nanoelectronics : Devices, materials, and computing >Materials design of valence control and transparent ferromagnet in ZnO and GaN based upon ab initio electronic structure calculations: prediction vs. experiment
【24h】

Materials design of valence control and transparent ferromagnet in ZnO and GaN based upon ab initio electronic structure calculations: prediction vs. experiment

机译:基于从头算电子结构计算的ZnO和GaN中价态控制和透明铁磁体的材料设计:预测与实验

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the fabrication of the low-resistivity p-tpe wide band-gap (E_g) semiconductors such as ZnO (E_g chemical bounds 3.3 eV) and GaN (E_g chemical bounds 3.4 eV) is difficult, because so-called uni-polarity or mono-polarity occurs due to the compensation in thesewide band-gap semiconductors. Blue and ultraviolet laser application and high power electronics application in ZnO and GaN has been hampered by their high resistivity of p-type semiconductors. The origin of the difficulty to fabricate low-resistivity wide band-gap semiconductors are (i) the compensation and (ii) the deep energy levels of acceptors with increasing E_g (decreasing the dielectric constant), for example, ZnO:N (300 meV) and GaN:Mg (200 meV). if the acceptor energy level is 500 meV (corresponds to about 4000K), we can only activate the carrier density by less than 10~(-4
机译:众所周知,低电阻率的p-tpe宽带隙(E_g)半导体如ZnO(E_g化学键为3.3 eV)和GaN(E_g化学键为3.4 eV)的制造很困难,因为所谓的uni由于这些宽带隙半导体中的补偿,出现了极性或单极性。蓝光和紫外激光的应用以及在ZnO和GaN中的高功率电子应用因其p型半导体的高电阻率而受到阻碍。制造低电阻率宽带隙半导体的困难根源是(i)补偿和(ii)E_g增大(介电常数减小)的受主的深能级,例如ZnO:N(300 meV) )和GaN:Mg(200 meV)。如果受体能级为500 meV(约4000K),我们只能将载流子密度激活小于10〜(-4

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号