【24h】

Application of stress sensing test chips to area array packaging

机译:应力感测芯片在面阵封装中的应用

获取原文

摘要

Thermal cycling accelerated life testing is often used to qualify area array packages (e.g. ball grid arrays and flip chip) for various applications. Finite element life predictions for thermal cycling configurations are challenging due to the complicated temperature/time dependent constitutive relations and failure criteria needed for solders and encapsulants and their interfaces, aging/evolving material behavior (e.g. solders), difficulties in modeling plating finishes, the complicated geometries of typical electronic assemblies, etc. In addition, in-situ measurements of stresses and strains in assemblies subjected to temperature cycling is difficult because of the extreme environmental conditions and the fact that the primary materials/interfaces of interest (e.g. solder joints, die device surface, wire bonds, etc.) are embedded within the assembly (not at the surface). For these reasons, we really know quite little about the evolution of the stresses, strains, and deformations occurring within sophisticated electronic packaging geometries during thermal cycling. In our research, we are using test chips containing piezoresistive stress sensors to continuously characterize the in-situ die surface stress during long-term thermal cycling of several different area array packaging technologies including plastic ball grid array (PBGA) components, ceramic ball grid array (CBGA) components, and flip chip on laminate assemblies. The utilized (111) silicon test chips are able to measure the complete three-dimensional stress state (all 6 stress components) at each sensor site being monitored by the data acquisition hardware. The die stresses are initially measured at room temperature after packaging. The assemblies are then subjected to thermal cycling over various temperature ranges including 0 to 100degC, -40 to 125degC, and -55 to 125degC, for up to 3000 thermal cycles. During the thermal cycling, sensor resistances at critical locations on the die device surface (e.g. t-nhe die center and die corners) are recorded. From the resistance data, the stresses at each site can be calculated and plotted versus time. The experimental observations show significant cycle-to-cycle evolution in the stress magnitudes due to material aging effects, stress relaxation and creep phenomena, and development of interfacial damage. The observed stress variations as a function of thermal cycling duration are also being correlated with the observed delaminations at the die surface (as measured using scanning acoustic microscopy (C-SAM)) and finite element simulations that include material constitutive models that incorporate thermal aging effects.
机译:热循环加速寿命测试通常用于对各种应用的区域阵列封装(例如球栅阵列和倒装芯片)进行鉴定。由于复杂的温度/时间相关的本构关系和焊料和密封剂及其界面所需的失效标准,老化/发展的材料性能(例如,焊料),难以模拟镀层表面,复杂,因此热循环配置的有限元寿命预测具有挑战性此外,由于极端的环境条件以及所关注的主要材料/界面(例如,焊点,管芯)的事实,很难对经受温度循环的组件中的应力和应变进行原位测量。设备表面,引线键合等)嵌入组件中(而不是表面)。由于这些原因,我们实际上对热循环过程中复杂的电子封装几何形状内发生的应力,应变和变形的演变了解甚少。在我们的研究中,我们使用包含压阻应力传感器的测试芯片来连续表征几种不同面积阵列封装技术(包括塑料球栅阵列(PBGA)组件,陶瓷球栅阵列)的长期热循环过程中的原位芯片表面应力(CBGA)组件,以及层压组件上的倒装芯片。所使用的(111)硅测试芯片能够测量数据采集硬件正在监控的每个传感器位置的完整三维应力状态(所有6个应力分量)。包装后,首先在室温下测量模头应力。然后使组件在各种温度范围(包括0到100摄氏度,-40到125摄氏度以及-55到125摄氏度)内进行热循环,最多进行3000个热循环。在热循环期间,会记录芯片设备表面上关键位置(例如,芯片中心和芯片角)的传感器电阻。根据电阻数据,可以计算出每个位置的应力,并将其与时间作图。实验观察结果表明,由于材料的时效,应力松弛和蠕变现象以及界面破坏的发展,应力大小在不同周期之间都有显着变化。观察到的应力变化作为热循环持续时间的函数,也与观察到的模具表面分层(使用扫描声学显微镜(C-SAM)测量)和有限元模拟(包括包含热老化效应的材料本构模型)相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号