首页> 外文会议>Theory and applications of models of computation. >Online Makespan Scheduling of Linear Deteriorating Jobs on Parallel Machines
【24h】

Online Makespan Scheduling of Linear Deteriorating Jobs on Parallel Machines

机译:并行机上线性劣化作业的在线Makespan调度

获取原文
获取原文并翻译 | 示例

摘要

Traditional scheduling assumes that the processing time of a job is fixed. Yet there are numerous situations that, the processing time increases (deteriorates) a,s the start time increases. Examples include scheduling cleaning or maintenance, fire fighting, steel production and financial management. Scheduling of deteriorating jobs was first introduced on a. single machine by Browne and Yechiali. and Gupta and Gupta independently. In particular, lots of work has been devoted to jobs with linear deterioration. The processing time p_j of job J_j is a linear function of its start time s_j. precisely, p_j = a_j + b_js_j, where a_j is the normal or basic processing time and b_j is the deteriorating rate. The objective is to minimize the makespan of the schedule. We first consider simple linear deterioration, i.e., p, = b_js_j. It has been shown that on m parallel machines, in the online-list model, LS (List Scheduling) is (1 + b_(max))~(1-1/m) -competitive. We extend the study to the online-time model where each job is associated with a release time. We show that for two machines, no deterministic online algorithm is better than (1 + b_(max))-competitive. implying that the problem is more difficult in the online-time model than in the online-list model. We also show that LS is (1 + b_(max))~(2(1-1/m))-competitive, meaning that it is optimal when m = 2.
机译:传统的调度假定作业的处理时间是固定的。然而,在许多情况下,处理时间增加(恶化),开始时间增加。例如,安排清洁或维护,消防,钢铁生产和财务管理。在a上首次引入了日趋恶化的工作计划。 Browne和Yechiali的单机。和古普塔和古普塔独立。特别是,许多工作致力于线性恶化的工作。作业J_j的处理时间p_j是其开始时间s_j的线性函数。确切地讲,p_j = a_j + b_js_j,其中a_j是正常或基本处理时间,b_j是恶化率。目的是最大程度地减少时间表的有效期。我们首先考虑简单的线性恶化,即p = b_js_j。已经表明,在m个并行计算机上,在联机列表模型中,LS(列表调度)是(1 + b_(max))〜(1-1 / m)-竞争性。我们将研究扩展到在线时间模型,其中每个工作都与发布时间相关联。我们表明,对于两台机器,没有确定性在线算法比(1 + b_(max))竞争性要好。这意味着在线时间模型中的问题比在线列表模型中的问题更加困难。我们还证明LS是(1 + b_(max))〜(2(1-1 / m))-竞争性的,这意味着当m = 2时它是最优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号