首页> 外文会议>Theoretical computer science >Initial Segment Complexities of Randomness Notions
【24h】

Initial Segment Complexities of Randomness Notions

机译:随机性概念的初始分段复杂度

获取原文
获取原文并翻译 | 示例

摘要

Schnorr famously proved that Martin-Loef-randomness of a sequence A can be characterised via the complexity of A's initial segments. Nies, Stephan and Terwijn as well as independently Miller showed that Kolmogorov randomness coincides with Martin-Loef randomness relative to the halting problem K; that is, a set A is Martin-Loef random relative to K iff there is no function f such that for all m and all n > f(m) it holds that C{A(0)A(1)... A(n)) ≤n-m.rnIn the present work it is shown that characterisations of this style can also be given for other randomness criteria like strongly random, Kurtz random relative to K, PA-incomplete Martin-Loef random and strongly Kurtz random; here one does not just quantify over all functions f but over functions f of a specific form. For example, A is Martin-Lof random and PA-incomplete iff there is no A-recursive function f such that for all m and all n > f(m) it holds that C(A(0)A(1)... A(n)) ≤ n - m. The characterisation for strong randomness relates to functions which are the concatenation of an A-recursive function executed after a K-recursive function; this solves an open problem of Nies.rnIn addition to this, characterisations of a similar style are also given for Demuth randomness and Schnorr randomness relative to K. Although the unrelativised versions of Kurtz randomness and Schnorr randomness do not admit such a characterisation in terms of plain Kolmogorov complexity, Bienvenu and Merkle gave one in terms of Kolmogorov complexity defined by computable machines.
机译:Schnorr著名地证明了序列A的Martin-Loef随机性可以通过A的初始片段的复杂性来表征。 Nies,Stephan和Terwijn以及独立的Miller表明,相对于停止问题K,Kolmogorov随机性与Martin-Loef随机性重合。也就是说,集合A相对于K是Martin-Loef随机的,因为没有函数f使得对于所有m和所有n> f(m),它拥有C {A(0)A(1)... A (n))≤nm.rn在目前的工作中,还表明这种风格的特征还可以用于其他随机性标准,例如强随机,相对于K的Kurtz随机,PA不完全Martin-Loef随机和强Kurtz随机;这里,不仅量化所有函数f,而且量化特定形式的函数f。例如,A是Martin-Lof随机且PA不完整,前提是不存在A递归函数f,以使得对于所有m和所有n> f(m)都拥有C(A(0)A(1)。 。A(n))≤n-m。强随机性的特征与函数有关,这些函数是在K递归函数之后执行的A递归函数的串联;除此之外,还针对Demuth随机性和Schnorr随机性给出了相对于K的相似样式的刻画。尽管Kurtz随机性和Schnorr随机性的未获认可的版本在以下方面均不接受这种刻画:普通的Kolmogorov复杂度,Bienvenu和Merkle就可计算机器定义的Kolmogorov复杂度给出了一个。

著录项

  • 来源
    《Theoretical computer science》|2010年|p.259-270|共12页
  • 会议地点 Brisbane(AU);Brisbane(AU);Brisbane(AU);Brisbane(AU)
  • 作者单位

    Institut fuer Informatik, Universitaet Heidelberg, INF 294, 69120 Heidelberg, Germany;

    rnInstitut fuer Informatik, Universitaet Heidelberg, INF 294, 69120 Heidelberg, Germany;

    rnDepartment of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore;

    rnDivision of Mathematical Sciences, School of Physical and Mathematical Sciences, College of Science, Nanyang Technological University, Singapore;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号