首页> 外文会议>The semantic web >GSP (Geo-Semantic-Parsing): Geoparsing and Geotagging with Machine Learning on Top of Linked Data
【24h】

GSP (Geo-Semantic-Parsing): Geoparsing and Geotagging with Machine Learning on Top of Linked Data

机译:GSP(地理语义解析):在链接数据之上使用机器学习进行地理解析和地理标记

获取原文
获取原文并翻译 | 示例

摘要

Recently, user-generated content in social media opened up new alluring possibilities for understanding the geospatial aspects of many real-world phenomena. Yet, the vast majority of such content lacks explicit, structured geographic information. Here, we describe the design and implementation of a novel approach for associating geographic information to text documents. GSP exploits powerful machine learning algorithms on top of the rich, interconnected Linked Data in order to overcome limitations of previous state-of-the-art approaches. In detail, our technique performs semantic annotation to identify relevant tokens in the input document, traverses a sub-graph of Linked Data for extracting possible geographic information related to the identified tokens and optimizes its results by means of a Support Vector Machine classifier. We compare our results with those of 4 state-of-the-art techniques and baselines on ground-truth data from 2 evaluation datasets. Our GSP technique achieves excellent performances, with the best F1 = 0.91, sensibly outperforming benchmark techniques that achieve F1 ≤ 0.78.
机译:最近,社交媒体中用户生成的内容为理解许多现实世界现象的地理空间方面开辟了新的诱人可能性。然而,绝大多数此类内容缺乏明确的,结构化的地理信息。在这里,我们描述了一种将地理信息与文本文档相关联的新颖方法的设计和实现。 GSP在丰富,相互关联的链接数据之上利用了强大的机器学习算法,以克服以前的最新方法的局限性。详细地说,我们的技术执行语义注释以识别输入文档中的相关标记,遍历链接数据的子图以提取与所识别标记相关的可能地理信息,并通过支持向量机分类器优化其结果。我们将我们的结果与4种最新技术的结果和来自2个评估数据集的真实数据的基线进行比较。我们的GSP技术具有出色的性能,最佳F1 = 0.91,明显优于达到F1≤0.78的基准技术。

著录项

  • 来源
    《The semantic web》|2018年|17-32|共16页
  • 会议地点 Crete(GR)
  • 作者单位

    Department of Information Engineering, University of Pisa, Pisa, Italy;

    Institute for Informatics and Telematics, IIT-CNR, Pisa, Italy;

    Department of Information Engineering, University of Pisa, Pisa, Italy,Institute for Informatics and Telematics, IIT-CNR, Pisa, Italy;

    Institute for Informatics and Telematics, IIT-CNR, Pisa, Italy;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Geoparsing; Machine learning; Linked data; Twitter;

    机译:地理解析;机器学习;链接数据;推特;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号