首页> 外文会议>The semantic web: research and applications. >SCHEMA - An Algorithm for Automated Product Taxonomy Mapping in E-commerce
【24h】

SCHEMA - An Algorithm for Automated Product Taxonomy Mapping in E-commerce

机译:SCHEMA-电子商务中产品自动分类映射的算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes SCHEMA, an algorithm for automated mapping between heterogeneous product taxonomies in the e-commerce domain. SCHEMA utilises word sense disambiguation techniques, based on the ideas from the algorithm proposed by Lesk, in combination with the semantic lexicon WordNet. For finding candidate map categories and determining the path-similarity we propose a node matching function that is based on the Levenshtein distance. The final mapping quality score is calculated using the Damerau-Levenshtein distance and a node-dissimilarity penalty. The performance of SCHEMA was tested on three real-life datasets and compared with PROMPT and the algorithm proposed by Park & Kim. It is shown that SCHEMA improves considerably on both recall and Fi-score, while maintaining similar precision.
机译:本文提出了SCHEMA,一种在电子商务领域中异构产品分类法之间自动映射的算法。 SCHEMA基于Lesk提出的算法思想,结合语义词典WordNet,利用了词义消歧技术。为了找到候选地图类别并确定路径相似性,我们提出了一个基于Levenshtein距离的节点匹配函数。使用Damerau-Levenshtein距离和节点相异度惩罚来计算最终的映射质量得分。在三个真实的数据集上测试了SCHEMA的性能,并与PROMPT和Park&Kim提出的算法进行了比较。结果表明,SCHEMA的查全率和Fi评分均得到了很大提高,同时保持了相似的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号