首页> 外文会议>The Semantic Web - ASWC 2008 >Semantically Conceptualizing and Annotating Tables
【24h】

Semantically Conceptualizing and Annotating Tables

机译:语义概念化和注释表

获取原文
获取原文并翻译 | 示例

摘要

Enabling a system to automatically conceptualize and annotate a human-readable table is one way to create interesting semantic-web content. But exactly "how?" is not clear. With conceptualization and annotation in mind, we investigate a semantic-enrichment procedure as a way to turn syntactically observed table layout into semantically coherent ontological concepts, relationships, and constraints. Our semantic-enrichment procedure shows how to make use of auxiliary world knowledge to construct rich ontological structures and to populate these ontological structures with instance data. The system uses auxiliary knowledge (1) to recognize concepts and which data values belong to which concepts, (2) to discover relationships among concepts and which data-value combinations represent relationship instances, and (3) to discover constraints over the concepts and relationships that the data values and data-value combinations should satisfy. Experimental evaluations indicate that the automatic conceptualization and annotation processes perform well, yielding F-measures of 90% for concept recognition, 77% for relationship discovery, and 90% for constraint discovery in web tables selected from the geopolitical domain.
机译:使系统能够自动概念化和注释人类可读表是创建有趣的语义Web内容的一种方法。但恰恰是“如何?”不清楚。考虑到概念化和注释,我们研究了一种语义丰富的过程,该过程将通过语法观察的表布局转变为语义一致的本体论概念,关系和约束。我们的语义丰富过程显示了如何利用辅助世界知识来构建丰富的本体结构,并使用实例数据填充这些本体结构。系统使用辅助知识(1)识别概念以及哪些数据值属于哪些概念,(2)发现概念之间的关系以及哪些数据值组合表示关系实例,以及(3)发现对概念和关系的约束数据值和数据值组合应满足的条件。实验评估表明,自动概念化和注释过程执行良好,在从地缘政治领域选择的Web表中,F度量的概念识别率为90%,关系发现的77%,约束发现的90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号