首页> 外文会议>The IEEE International Conference on Information Management and Engineering;ICIME >Customer segmentation of bank based on data warehouse and data mining
【24h】

Customer segmentation of bank based on data warehouse and data mining

机译:基于数据仓库和数据挖掘的银行客户细分

获取原文

摘要

The problems can not be solved by the traditional method of customer segmentation when banks face with the massive information. Data mining techniques can extract useful information and knowledge that are implicit and unknown in advance but is potential in the practical application. Data mining techniques are broadly used in customer relationship management but there is no unified framework model for customer segmentation by now. Customer segmentation model of bank is built based on data mining which is to define the corresponding mapping relationships between customer attribute and concept attribute in this paper. We apply self-organizing mapping neural network and K-means algorithm to bank customer segmentation and analyze the sample data which we selected from some bank. The outcomes show that we can use a dynamic model of the data mining to describe customer behavior and provide useful information for the managers of banks to decision making.
机译:当银行面对海量信息时,传统的客户细分方法无法解决这些问题。数据挖掘技术可以预先提取有用的信息和知识,这些信息和知识是隐式的和未知的,但在实际应用中是潜在的。数据挖掘技术广泛用于客户关系管理中,但目前尚无用于客户细分的统一框架模型。基于数据挖掘的银行客户细分模型,定义了客户属性与概念属性之间的对应映射关系。我们将自组织映射神经网络和K-means算法应用于银行客户细分,并分析从某家银行选择的样本数据。结果表明,我们可以使用数据挖掘的动态模型来描述客户行为,并为银行管理者的决策提供有用的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号