【24h】

Outlier Detection in Financial Data Based on Voronoi Diagram

机译:基于Voronoi图的金融数据离群值检测。

获取原文

摘要

Outliers in financial data can distort computations and give an incorrect picture of the past performance of financial products. The statistical methods used to analyze time series, such as ARMA and ARCH, require special hypotheses, and try to describe the system behavior by using a fixed structure, which is inappropriate to apply to complex financial data, such as high frequency data. This paper introduces a new data mining method to detect outliers in financial data. Based on the Voronoi diagram, we propose a novel method, which called Voronoi based Outlier Detection (VOD), to provide efficient and effective outlier detection in financial data.
机译:金融数据中的异常值可能会使计算失真,并无法正确反映金融产品的过去表现。用于分析时间序列的统计方法(例如ARMA和ARCH)需要特殊的假设,并试图通过使用固定结构来描述系统行为,这不适用于复杂的财务数据(例如高频数据)。本文介绍了一种新的数据挖掘方法来检测金融数据中的异常值。基于Voronoi图,我们提出了一种新的方法,称为基于Voronoi的离群值检测(VOD),以提供有效的金融数据离群值检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号