【24h】

Using Simple Gaussian Mixture Model for Multiclass Classification Based on Tumor Gene Expression Data

机译:基于肿瘤基因表达数据的简单高斯混合模型多类分类

获取原文

摘要

In this paper, we developed a novel multi-class classification method combining the ideal of discriminant analysis and Gaussian Mixture Model. Different from binary classification, this method reserves more information and is useful for multi-class tumor subtypes diagnosis and treatment. Four datasets, ALL-AML-3, ALL-AML-3, MLL and ALL, were collected and used to evaluate the prediction performance. The classification accuracies are all about 2.5% higher than KNN classifier and comparable well to SVM for leave-one-out cross validation. The results demonstrate that this method is simple and efficient even more less computational cost. It is a useful tool for multi-class tumor classification.
机译:在本文中,我们结合了判别分析的理想和高斯混合模型,开发了一种新颖的多类别分类方法。与二元分类不同,该方法保留了更多信息,可用于多类肿瘤亚型的诊断和治疗。收集了四个数据集,ALL-AML-3,ALL-AML-3,MLL和ALL,并用于评估预测性能。分类精度均比KNN分类器高约2.5%,与留一法式交叉验证的SVM相当。结果表明,该方法简单高效,计算成本更低。它是进行多类肿瘤分类的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号