首页> 外文会议>Technologies for synthetic environments: hardware-in-the-loop XVIII >Coding for Parallel Execution of Hardware-in-the-Loop Millimeter Wave Scene Generation Models on Multi-Core SIMD Processor Architectures
【24h】

Coding for Parallel Execution of Hardware-in-the-Loop Millimeter Wave Scene Generation Models on Multi-Core SIMD Processor Architectures

机译:在多核SIMD处理器体系结构上并行执行在环硬件毫米波场景生成模型的编码

获取原文
获取原文并翻译 | 示例

摘要

Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSEX threads built on vector library functions and more portable, high-level parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.
机译:在实时硬件在环(HWIL)场景生成中,渲染基于点散射体的雷达场景以进行毫米波(mmW)导引头测试,需要高效的算法和矢量友好的计算机体系结构来进行复杂的信号合成。英特尔的新处理器技术在多核CPU设计中实现了扩展的256位矢量SIMD指令集(AVX,AVX2),在一个芯片上提供了数百个GigaFLOPS(GFLOPS)的峰值执行率。实际的mmW场景生成代码只有经过仔细的算法和源代码设计,才能达到SIMD的峰值执行率。有效的软件设计将保持较高的计算强度,重点是在CPU高速缓存或片外存储器之间进行数据移动时寄存器到寄存器SIMD算术运算。美国陆军航空与导弹研究,开发和工程中心(AMRDEC)的工程师应用了两种基本的并行编码方法来评估用于HWIL中mmW场景生成的新256位SIMD多核体系结构。其中包括使用基于矢量库函数构建的POSEX线程以及基于编译器技术(例如OpenMP编译指示和SIMD自动矢量化)的更可移植的高级并行代码。由于CPU技术正朝着更高的处理器内核数量和TeraFLOPS SIMD峰值执行率快速发展,因此必须确定能够产生有效且可维护的并行代码的编码方法。本文介绍了点散射体目标模型渲染中使用的算法,这些算法的并行化以及使用两种基本并行编码方法在AVX多核计算机上实现的执行性能。本文以对即将到来的多核技术的放大性能的估计作为结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号