首页> 外文会议>Symposium on Theory of Modeling and Simulation - DEVS Integrative Mamp;S Symposium >Efficient Online Analysis of Accidental Fault Localization for Dynamic Systems using Hidden Markov Model
【24h】

Efficient Online Analysis of Accidental Fault Localization for Dynamic Systems using Hidden Markov Model

机译:基于隐马尔可夫模型的动态系统意外故障定位高效在线分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel approach to do online analysis of accidental fault localization for dynamic systems by using Hidden Markov Model (HMM). By introducing reasonable and appropriate abstraction of complex system, HMM is used to represent the fault and no-fault states of system's components and system's behaviour. The HMM is parametrized to be statistically equivalent to real system's behaviour. Inspired by the principles of Fault Tree Analysis and maximum entropy in Bayesian probability theory, we propose the algorithms to estimate HMM's parameters, instead of learning, because in real systems the learning data for accidental fault is difficult to obtain. We design a specific test bed to generate large quantity of test cases, and give out the experimental results to assess the accuracy and efficiency. Meanwhile, we apply the approach to a simple helicopter control system case study, and give out convincing results.
机译:本文提出了一种使用隐马尔可夫模型(HMM)在线分析动态系统的故障局部的新方法。通过引入复杂系统的合理和适当的抽象,HMM被用来表示系统组件的故障和无故障状态以及系统的行为。 HMM参数化为在统计上等同于实际系统的行为。受贝叶斯概率论中故障树分析和最大熵原理的启发,我们提出了估计HMM参数的算法,而不是学习算法,因为在实际系统中,难以获得意外故障的学习数据。我们设计了一个特定的测试平台来生成大量测试用例,并给出实验结果以评估准确性和效率。同时,我们将该方法应用于简单的直升机控制系统案例研究,并给出令人信服的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号