【24h】

Utility-Preserving Privacy Mechanisms for Counting Queries

机译:保留实用程序的查询计数隐私机制

获取原文

摘要

Differential privacy (DP) and local differential privacy (LPD) are frameworks to protect sensitive information in data collections. They are both based on obfuscation. In DP the noise is added to the result of queries on the dataset, whereas in LPD the noise is added directly on the individual records, before being collected. The main advantage of LPD with respect to DP is that it does not need to assume a trusted third party. The main disadvantage is that the trade-off between privacy and utility is usually worse than in DP, and typically to retrieve reasonably good statistics from the locally sanitized data it is necessary to have a huge collection of them. In this paper, we focus on the problem of estimating counting queries from collections of noisy answers, and we propose a variant of LDP based on the addition of geometric noise. Our main result is that the geometric noise has a better statistical utility than other LPD mechanisms from the literature.
机译:差异隐私(DP)和本地差异隐私(LPD)是保护数据收集中敏感信息的框架。它们都基于混淆。在DP中,将噪声添加到数据集的查询结果中,而在LPD中,则将噪声直接添加到各个记录上,然后再进行收集。 LPD相对于DP的主要优势在于,它不需要采用受信任的第三方。主要缺点是,隐私和实用性之间的权衡通常比DP中差,并且通常要从本地清理的数据中检索合理的统计信息,必须拥有大量的统计信息。在本文中,我们关注于从嘈杂的答案集合中估计查询计数的问题,并且我们提出了基于几何噪声的LDP变体。我们的主要结果是,几何噪声比文献中的其他LPD机制具有更好的统计效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号