首页> 外文会议>STLE/ASME international joint tribology conference 2010 >FRACTURE MECHANICS ANALYSIS OF ASPERITY CRACKING DUE TO REPETITIVE SLIDING CONTACT
【24h】

FRACTURE MECHANICS ANALYSIS OF ASPERITY CRACKING DUE TO REPETITIVE SLIDING CONTACT

机译:重复滑动接触引起的开裂的断裂力学分析

获取原文
获取原文并翻译 | 示例

摘要

Asperity failure due to repetitive sliding is a common process of wear particle formation. Linear elastic fracture mechanics and the finite element method (FEM) were used to analyze asperity cracking due to sliding against another rigid asperity. The maximum ranges of the tensile and shear stress intensity factors (SIFs) were used to determine the crack growth direction and the dominant mode of fracture. Simulations of repetitive sliding showed a strong dependence of the wear particle size and wear rate on the direction and rate of crack growth. The maximum ranges of tensile and shear SIFs were used to determine the dominant mode of crack growth. The effects of asperity interaction depth, sliding friction, initial crack position, crack-face friction, and material properties on crack growth direction, dominant fracture mode, and crack growth rate are discussed in the context of FEM results. It is shown that the asperity interaction depth and sliding friction exhibit the most pronounced effects on the crack growth direction and growth rate. A transition from shear- to tensile-dominant mode of crack growth was observed with the increase of the asperity interaction depth and/or sliding friction coefficient. Crack-face opening, slip, and stick mechanisms are discussed in the light of crack mechanism maps constructed for different asperity interaction depths and sliding friction coefficients.
机译:由于重复滑动而导致的粗糙故障是磨损颗粒形成的常见过程。线性弹性断裂力学和有限元方法(FEM)被用来分析由于与另一个刚性粗糙体滑动而引起的粗糙体裂纹。拉伸应力强度因子和剪切应力强度因子(SIF)的最大范围用于确定裂纹扩展方向和主要断裂模式。重复滑动的模拟表明,磨损粒度和磨损速率与裂纹扩展的方向和速率之间存在很大的相关性。拉伸和剪切SIF的最大范围用于确定裂纹扩展的主要模式。在有限元分析的结果中,讨论了粗糙相互作用深度,滑动摩擦,初始裂纹位置,裂纹面摩擦和材料特性对裂纹扩展方向,支配断裂模式和裂纹扩展速率的影响。结果表明,粗糙相互作用深度和滑动摩擦对裂纹的生长方向和生长速率具有最显着的影响。随着粗糙相互作用深度和/或滑动摩擦系数的增加,观察到了从剪切至拉伸为主的裂纹扩展模式。根据针对不同的粗糙相互作用深度和滑动摩擦系数构造的裂纹机理图,讨论了裂纹面的打开,滑动和粘滞机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号