首页> 外文会议>Stabilization, safety, and security of distributed systems >Visiting Gafni's Reduction Land: From the BG Simulation to the Extended BG Simulation
【24h】

Visiting Gafni's Reduction Land: From the BG Simulation to the Extended BG Simulation

机译:参观加夫尼的缩影之地:从BG模拟到扩展BG模拟

获取原文
获取原文并翻译 | 示例

摘要

The Borowsky-Gafni (BG) simulation algorithm is a powerful tool that allows a set of t + 1 asynchronous sequential processes to wait-free simulate (i.e., despite the crash of up to t of them) a large number n of processes under the assumption that at most t of these processes fail (i.e., the simulated algorithm is assumed to be t-resilient). The BG simulation has been used to prove solvability and unsolvability results for crash-prone asynchronous shared memory systems.rnIn its initial form, the BG simulation applies only to colorless decision tasks, i.e., tasks in which nothing prevents processes to decide the same value (e.g., consensus or k-set agreement tasks). Said in another way, it does not apply to decision problems such as renaming where no two processes are allowed to decide the same new name. Very recently (STOC 2009), Eli Gafni has presented an extended BG simulation algorithm (GeBG) that generalizes the basic BG algorithm by extending it to "colored" decision tasks such as renaming. His algorithm is based on a sequence of sub-protocols where a sub-protocol is either the base agreement protocol that is at the core of BG simulation, or a commit-adopt protocol.rnThis paper presents the core of an extended BG simulation algorithm that is particularly simple. This algorithm is based on two underlying objects: the base agreement object used in the BG simulation (as does GeBG), and (differently from GeBG) a new simple object that we call arbiter. More precisely, (1) while each of the n simulated processes is simulated by each simulator, (2) each of the first t + 1 simulated processes is associated with a predetermined simulator that we called its "owner". The arbiter object is used to ensure that the permanent blocking (crash) of any of these t + 1 simulated processes can only be due to the crash of its owner simulator. After being presented in a modular way, the proposed extended BG simulation algorithm is proved correct.
机译:Borowsky-Gafni(BG)仿真算法是一种功能强大的工具,它允许一组t + 1异步顺序过程免费等待仿真(即,尽管最多崩溃了t个),但在该条件下却有大量n个进程。假设最多t个这些过程失败(即,假定模拟算法是t弹性的)。 BG模拟已被用来证明容易崩溃的异步共享存储系统的可解性和不可解性结果。rn在其初始形式中,BG模拟仅适用于无色决策任务,即没有任何东西阻止进程决定相同值的任务(例如共识或k-set协议任务)。换句话说,它不适用于决策问题,例如重命名,其中不允许两个进程来决定相同的新名称。最近(STOC 2009),Eli Gafni提出了一种扩展的BG模拟算法(GeBG),该算法通过将基本BG算法扩展到诸如重命名之类的“有色”决策任务来对其进行概括。他的算法基于一系列子协议,其中子协议或者是BG仿真的核心协议或提交采用协议。rn本文介绍了扩展的BG仿真算法的核心,非常简单。该算法基于两个基础对象:BG模拟中使用的基本协议对象(与GeBG相同),以及(不同于GeBG)一个新的简单对象,我们称为仲裁器。更准确地说,(1)每个模拟器都模拟了n个模拟过程中的每一个,(2)前t + 1个模拟过程中的每一个都与预定的模拟器相关联,我们将其称为“所有者”。仲裁器对象用于确保所有t + 1模拟过程中的任何一个的永久阻塞(崩溃)只能归因于其所有者模拟器的崩溃。在以模块化方式提出之后,该扩展的BG仿真算法被证明是正确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号