首页> 外文会议>SPE2001: an Eamp;P odyssey: your portal to the future >A Tale of Two Trees: Flow Assurance Challenges for Wet Tree and Dry Tree Systems in Ultradeepwater
【24h】

A Tale of Two Trees: Flow Assurance Challenges for Wet Tree and Dry Tree Systems in Ultradeepwater

机译:两棵树的故事:超深水中的湿树和干树系统的流量保证挑战

获取原文
获取原文并翻译 | 示例

摘要

As oil and gas exploration moves into deeper watersrnoffshore, flow assurance challenges become morernprevalent and system design must address these issuesrnfrom a fresh perspective. In addition to structural andrneconomic issues, the decision to employ either a wetrntree (subsea) or dry tree solution needs to especiallyrnconsider the flow assurance aspects that ultradeepwaterrnproduction presents. The riser, rather than the flowline,rnwill now dominate the overall hydraulic andrnthermodynamic performance of the system. Anrnincreased liquid column height in the riser, a greaterrnpotential energy change, and an enhanced Joule-Thomsonrneffect will all contribute to significantrntemperature and pressure drops for an ultradeepwaterrnriser, relative to its shallow water counterpart.rnDry trees are traditionally perceived as having lessrnsevere flow assurance issues than subsea tiebacks,rnprimarily because of easier access to the tubing string ifrnwax or hydrates are formed. However, aside fromrnsignificant temperature losses in the riser, dry trees inrnultradeepwater are particularly susceptible to hydraternformation upon shutdown. Because of warmer seabedrntemperatures and lower reservoir pressures, shallowrnwater dry tree risers can provide adequate cooldownrntimes with only minimal insulation. For ultradeepwaterrndevelopments, the same shallow water dry tree designrncan fall into the hydrate formation region within two tornthree hours.rnFor both the dry tree and wet tree riser systems, it mayrnnot be possible to depressurize the system belowrnhydrate formation conditions without gas lift (which mayrnnot be available for an emergency shutdown). The focusrnof this discussion is to evaluate the merits andrndrawbacks for both wet and dry tree systems from a flowrnassurance standpoint in ultradeepwater.
机译:随着石油和天然气勘探向更深水域发展,流动保障挑战变得越来越普遍,系统设计必须从新的角度解决这些问题。除了结构和经济问题外,采用湿式树(海底)或干式树解决方案的决定还需要特别考虑超深水生产带来的流量保证方面。现在,立管而非流水线将主导系统的整体液压和热力学性能。立管中液柱高度的增加,更大的势能变化以及焦耳-汤姆森效应的增加,都将导致超深水喷枪相对于浅水喷枪而言明显的温度和压力下降。在传统上,干树被认为比水流保障问题要少得多。海底回扣,主要是因为形成蜡或水合物会更容易进入油管柱。然而,除了立管中的显着温度损失之外,枯树中的无树突水特别容易在停机时形成水合物。由于海床温度升高和水库压力较低,浅水干树立管可以提供足够的冷却时间,而只需很少的保温即可。对于超深水开发,相同的浅水干树设计可能会在两到三小时内掉入水合物形成区域。对于干树和湿树立管系统,都可能无法在没有气举的情况下在水合物形成条件以下对系统降压(这可能不是可用于紧急关机)。这次讨论的重点是从超深水中的流量保证角度评估湿式和干式树木系统的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号