首页> 外文会议>Spatial data methods for environmental and ecological processes. >Modeling pollutant threshold exceedance probabilities in the presence of exogenous variables
【24h】

Modeling pollutant threshold exceedance probabilities in the presence of exogenous variables

机译:在存在外生变量的情况下对污染物阈值超出概率进行建模

获取原文
获取原文并翻译 | 示例

摘要

Many studies link exposure to various air pollutants to respiratory illness, making it important to identify regions where such exposure risks are high. One way of addressing this problem is by modeling probabilities of exceeding specific pollution thresholds. In this paper, we consider particulate matter with diameter less than 10 microns (PM_(10)) in the North-Italian region Piemonte. The problem of interest is to predict the daily exceedance of 50 micrograms per cubic meter of PM_(10) based on air pollution data, geographic information, as well as exogenous variables. We use a two-step procedure involving nonparametric modeling in the time domain, followed by spatial interpolation. Resampling schemes are employed to evaluate the uncertainty in these predictions.
机译:许多研究将暴露于各种空气污染物与呼吸系统疾病联系起来,因此重要的是确定暴露于此类空气中的风险较高的区域。解决此问题的一种方法是对超出特定污染阈值的概率进行建模。在本文中,我们考虑了意大利北部皮埃蒙特地区直径小于10微米(PM_(10))的颗粒物。感兴趣的问题是基于空气污染数据,地理信息以及外生变量来预测每立方米PM_(10)每天超过50微克。我们使用两步过程,在时域中进行非参数建模,然后进行空间插值。重采样方案用于评估这些预测中的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号