首页> 外文会议>Soft Computing and Pattern Recognition, 2009. SOCPAR '09 >Temporal Speech Normalization Methods Comparison in Speech Recognition Using Neural Network
【24h】

Temporal Speech Normalization Methods Comparison in Speech Recognition Using Neural Network

机译:神经网络语音识别中的时间语音归一化方法比较

获取原文

摘要

Speech signal is temporally and acoustically varies. Recognition of speech by static input Neural Network requires temporal normalization of the speech to be equal to the number of input nodes of the NN while maintaining the properties of the speech. This paper compares three methods for speech temporal normalization namely the linear, extended linear and zero padded normalizations on isolated speech using different sets of learning parameters on multi layer perceptron neural network with adaptive learning. Although, previous work shows that linear normalization able to give high accuracy up to 95% on similar problem, the result in this experiment shows the opposite. The experimental result shows that zero padded normalization outperformed the two linear normalization methods using all the parameter sets tested. The highest recognition rate using zero padded normalization is 99% while linear and extended linear normalizations give only 74% and 76% respectively. This paper end before conclusion by comparing data used from previous work using linear normalization which gave high accuracy and the data used in this experiment which perform poorer.
机译:语音信号在时间和听觉上都会变化。通过静态输入神经网络识别语音需要语音的时间归一化等于NN输入节点的数量,同时保持语音的属性。本文比较了多层感知器神经网络上具有自适应学习功能的三种不同的学习参数,分别对孤立语音的语音时间归一化进行了线性,扩展线性和零填充归一化三种方法。尽管先前的工作表明线性归一化能够在类似问题上提供高达95%的高精度,但本实验的结果却相反。实验结果表明,使用所有测试参数集,零填充归一化的性能优于两种线性归一化方法。使用零填充归一化的最高识别率为99%,而线性和扩展线性归一化分别仅为74%和76%。本文通过比较以前使用线性归一化方法获得的数据准确性较高的数据和本次实验中性能较差的数据来结束结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号