【24h】

Using natural conversations to classify autism with limited data: Age matters

机译:使用自然对话以有限的数据对自闭症进行分类:年龄很重要

获取原文

摘要

Spoken language ability is highly heterogeneous in Autism Spectrum Disorder (ASD), which complicates efforts to identify linguistic markers for use in diagnostic classification, clinical characterization, and for research and clinical outcome measurement. Machine learning techniques that harness the power of multivariate statistics and non-linear data analysis hold promise for modeling this heterogeneity, but many models require enormous datasets, which are unavailable for most psychiatric conditions (including ASD). In lieu of such datasets, good models can still be built by leveraging domain knowledge. In this study, we compare two machine learning approaches: the first approach incorporates prior knowledge about language variation across middle childhood, adolescence, and adulthood to classify 6-minute naturalistic conversation samples from 140 age- and IQ-matched participants (81 with ASD). while the other approach treats all ages the same. We found that individual age-informed models were significantly more accurate than a single model tasked with building a common algorithm across age groups. Furthermore, predictive linguistic features differed significantly by age group, confirming the importance of considering age-related changes in language use when classifying ASD. Our results suggest that limitations imposed by heterogeneity inherent to ASD and from developmental change with age can be (at least partially) overcome using domain knowledge, such as understanding spoken language development from childhood through adulthood.
机译:口语能力在自闭症谱系障碍(ASD)中具有高度异质性,这使识别用于诊断分类,临床表征以及研究和临床结果测量的语言标记的工作复杂化。利用多元统计和非线性数据分析的力量的机器学习技术有望为这种异质性建模,但是许多模型需要庞大的数据集,而这对于大多数精神疾病(包括ASD)都是不可用的。代替此类数据集,仍然可以通过利用领域知识来构建良好的模型。在这项研究中,我们比较了两种机器学习方法:第一种方法结合了有关跨中儿童,青春期和成年期的语言变化的先验知识,以对来自140名年龄和智商匹配的参与者(81名ASD)的6分钟自然对话样本进行分类。而另一种方法对待所有年龄段的人都一样。我们发现,与年龄有关的模型比建立跨年龄组的通用算法的单一模型要准确得多。此外,不同年龄组的预测语言特征也存在显着差异,这证实了在对ASD进行分类时考虑与年龄相关的语言使用变化的重要性。我们的研究结果表明,使用领域知识可以(至少部分)克服ASD固有的异质性以及随着年龄的增长而产生的局限性,例如了解从童年到成年的口语发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号