首页> 外文会议>Signal Processing, Sensor/Information Fusion, and Target Recognition XXVI >JOINT OBJECT AND ACTION RECOGNITION VIA FUSION OF PARTIALLY OBSERVABLE SURVEILLANCE IMAGERY DATA
【24h】

JOINT OBJECT AND ACTION RECOGNITION VIA FUSION OF PARTIALLY OBSERVABLE SURVEILLANCE IMAGERY DATA

机译:通过部分可观察的监视图像数据融合来进行联合对象和动作识别

获取原文
获取原文并翻译 | 示例

摘要

Partially observable group activities (POGA) occurring in confined spaces are epitomized by their limited observability of the objects and actions involved. In many POGA scenarios, different objects are being used by human operators for the conduct of various operations. In this paper, we describe the ontology of such as POGA in the context of In-Vehicle Group Activity (IVGA) recognition. Initially, we describe the virtue of ontology modeling in the context of IVGA and show how such an ontology and a priori knowledge about the classes of in-vehicle activities can be fused for inference of human actions that consequentially leads to understanding of human activity inside the confined space of a vehicle. In this paper, we treat the problem of "action-object" as a duality problem. We postulate a correlation between observed human actions and the object that is being utilized within those actions, and conversely, if an object being handled is recognized, we may be able to expect a number of actions that are likely to be performed on that object. In this study, we use partially observable human postural sequences to recognition actions. Inspired by convolutional neural networks (CNNs) learning capability, we present an architecture design using a new CNN model to learn "action-object" perception from surveillance videos. In this study, we apply a sequential Deep Hidden Markov Model (DHMM) as a post-processor to CNN to decode realized observations into recognized actions and activities. To generate the needed imagery data set for the training and testing of these new methods, we use the IRIS virtual simulation software to generate high-fidelity and dynamic animated scenarios that depict in-vehicle group activities under different operational contexts. The results of our comparative investigation are discussed and presented in detail.
机译:在密闭空间中发生的部分可观察到的小组活动(POGA)以其对所涉及对象和动作的有限可观察性为代表。在许多POGA场景中,人类操作员会使用不同的对象进行各种操作。在本文中,我们在车内群体活动(IVGA)识别的背景下描述了POGA等本体。最初,我们在IVGA的背景下描述了本体建模的优点,并展示了如何将这样的本体和关于车载活动类别的先验知识融合在一起,以推断出人类的行为,从而导致对人类活动的理解。车辆的密闭空间。在本文中,我们将“行动对象”问题视为对偶问题。我们假设观察到的人类行为与这些行为中正在使用的对象之间具有相关性,相反,如果识别出正在处理的对象,我们也许可以预期可能对该对象执行的许多操作。在这项研究中,我们使用部分可观察到的人类姿势序列来识别动作。受卷积神经网络(CNN)学习能力的启发,我们提出了一种使用新CNN模型的体系结构设计,以从监视视频中学习“动作对象”感知。在这项研究中,我们将顺序的深层隐马尔可夫模型(DHMM)用作CNN的后处理器,以将已实现的观察结果解码为公认的动作和活动。为了生成训练和测试这些新方法所需的图像数据集,我们使用IRIS虚拟仿真软件生成了高保真和动态动画的场景,这些场景描述了不同操作环境下的车载团队活动。我们比较研究的结果进行了讨论和详细介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号