首页> 外文会议>Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII >Study of data fusion algorithms applied to unattended ground sensor network
【24h】

Study of data fusion algorithms applied to unattended ground sensor network

机译:数据融合算法在无人值守地面传感器网络中的应用研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, data obtained from wireless unattended ground sensor network are used for tracking multiple ground targets (vehicles, pedestrians and animals) moving on and off the road network. The goal of the study is to evaluate several data fusion algorithms to select the best approach to establish the tactical situational awareness. The ground sensor network is composed of heterogeneous sensors (optronic, radar, seismic, acoustic, magnetic sensors) and data fusion nodes. The fusion nodes are small hardware platforms placed on the surveillance area that communicate together. In order to satisfy operational needs and the limited communication bandwidth between the nodes, we study several data fusion algorithms to track and classify targets in real time. A multiple targets tracking (MTT) algorithm is integrated in each data fusion node taking into account embedded constraint. The choice of the MTT algorithm is motivated by the limit of the chosen technology. In the fusion nodes, the distributed MTT algorithm exploits the road network information in order to constrain the multiple dynamic models. Then, a variable structure interacting multiple model (VS-IMM) is adapted with the road network topology. This algorithm is well-known in centralized architecture, but it implies a modification of other data fusion algorithms to preserve the performances of the tracking under constraints. Based on such VS-IMM MTT algorithm, we adapt classical data fusion techniques to make it working in three architectures: centralized, distributed and hierarchical. The sensors measurements are considered asynchronous, but the fusion steps are synchronized on all sensors. Performances of data fusion algorithms are evaluated using simulated data and also validated on real data. The scenarios under analysis contain multiple targets with close and crossing trajectories involving data association uncertainties.
机译:在本文中,从无线无人值守地面传感器网络获取的数据用于跟踪在道路网络上和道路外移动的多个地面目标(车辆,行人和动物)。该研究的目的是评估几种数据融合算法,以选择建立战术态势感知的最佳方法。地面传感器网络由异构传感器(光电,雷达,地震,声学,磁传感器)和数据融合节点组成。融合节点是放置在监视区域中的小型硬件平台,可以相互通信。为了满足操作需求和节点之间有限的通信带宽,我们研究了几种数据融合算法来实时跟踪和分类目标。考虑到嵌入约束,在每个数据融合节点中集成了多目标跟踪(MTT)算法。 MTT算法的选择受所选技术的限制。在融合节点中,分布式MTT算法利用道路网络信息来约束多个动态模型。然后,将可变结构交互多模型(VS-IMM)与路网拓扑进行适配。该算法在集中式体系结构中是众所周知的,但是它意味着对其他数据融合算法的修改,以在约束条件下保持跟踪性能。基于这种VS-IMM MTT算法,我们采用了经典的数据融合技术,使其能够在三种架构中工作:集中式,分布式和分层式。传感器的测量被认为是异步的,但是融合步骤在所有传感器上都是同步的。使用模拟数据评估数据融合算法的性能,并在真实数据上进行验证。所分析的场景包含多个目标,这些目标具有接近且交叉的轨迹,涉及数据关联不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号