首页> 外文会议>Signal processing, pattern recognition and applications ; Computer graphics and imaging >MODELING MULTIPLE VISUAL WORDS ASSIGNMENT FOR BAG-OF-FEATURES BASED MEDICAL IMAGE RETRIEVAL
【24h】

MODELING MULTIPLE VISUAL WORDS ASSIGNMENT FOR BAG-OF-FEATURES BASED MEDICAL IMAGE RETRIEVAL

机译:基于特征包的医学图像检索对多个视觉单词分配建模

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.
机译:在本文中,我们研究了基于特征包的医学图像检索方法,该方法将图像表示为局部特征的集合,例如具有SIFT描述符的图像补丁和关键点。为了改进特征包方法,我们首先将局部描述符的分配建模为贡献函数,然后提出一种新的多重分配策略。通过假设局部特征可以被词汇中的相邻视觉单词重建,我们将重建权重作为QP问题求解,然后将求解后的权重用作贡献函数,这产生了一种称为QP分配的新分配方法。我们在ImageCLEFmed数据集上进行实验。实验结果表明,我们提出的方法超越了传统解决方案的性能,并且可以很好地用于基于特征包的医学图像检索任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号