首页> 外文会议>Signal Processing: Algorithms, Architectures, Arrangements, and Applications >Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes
【24h】

Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes

机译:MRI数据的自动3D分割以检测头颈部癌性淋巴结

获取原文

摘要

A novel algorithm for automatic 3D segmentation of magnetic resonance imaging (MRI) data for detection of head and neck cancerous lymph nodes (LN)) is presented in this paper. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. A modified Fuzzy c-mean process is performed through all slices, followed by a probability map which refines the clustering results, to detect the approximate position of cancerous lymph nodes. Fourier interpolation is applied to create an isotropic 3D MRI volume. A new 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on synthetic and real MRI data. The results show that the novel cancerous lymph nodes 3D volume extraction algorithm has over 0.9 Dice similarity score on synthetic data and 0.7 on real MRI data. The F-measure is 0.92 on synthetic data and 0.75 on real data.
机译:本文提出了一种新颖的自动3D磁共振成像(MRI)数据分割算法,用于检测头颈部癌淋巴结(LN)。所提出的算法对MRI数据切片进行预处理,以提高质量并减少伪像。对所有切片执行改进的模糊c均值过程,然后是改进了聚类结果的概率图,以检测癌性淋巴结的大致位置。应用傅里叶插值来创建各向同性3D MRI体积。一种新的3D水平设置方法可以根据内插MRI体积分割肿瘤。该算法在合成和真实MRI数据上进行了测试。结果表明,新的癌性淋巴结3D体积提取算法在合成数据上的Dice相似性得分超过0.9,在实际MRI数据上的得分超过0.7。 F度量在合成数据上为0.92,在真实数据上为0.75。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号