首页> 外文会议>The Seventh Workshop on Non-Neutral Plasma Physics; Jul 8-11, 2003; Santa Fe, New Mexico >Using Variable Frequency Asymmetries to Understand Radial Transport in a Malmberg-Penning Trap
【24h】

Using Variable Frequency Asymmetries to Understand Radial Transport in a Malmberg-Penning Trap

机译:使用可变频率不对称来了解Malmberg笔夹陷阱中的径向传输

获取原文
获取原文并翻译 | 示例

摘要

It has long been known that asymmetric electric and magnetic fields produce radial transport in Malmberg-Penning traps, and much work has been done to understand this transport. Our approach is to apply a variable frequency electric asymmetry to a low density population of electrons and to measure the resulting radial particle flux Γ as a function of radius r. The low particle density eliminates many plasma modes (which have their own frequency dependence) and allows us to focus on the transport physics. The usual azimuthal E x B drift is maintained by a biased central wire, and this arrangement also allows us to independently vary the drift frequency ω_R by adjusting either the axial magnetic field B_z or the bias of the central wire φ_(cω). Up to forty wall sectors are used in order to apply an asymmetry consisting of a single fourier mode (n, l,ω), where n is the axial wavenumber, l is the azimuthal wavenumber, and ωis the asymmetry frequency. In the current experiments, we vary ω, n, φ_(cω), and B_z. As ω is varied, the particle flux shows a resonance similar to that predicted by resonant particle theory. The peak frequency of this resonance f_(peak) k increases with ω_R and varies with n, in qualitative agreement with theory, but when quantitative comparisons are made the experimental values for fpetlk do not match those predicted by theory. Instead, the dependence of f_(peak) on φ_(cω), B_z, and r follows simple empirical scaling laws: for inward directed flux, f_(peak)(MHz) ≈ [-Rφ_(cω)(V)/rB_z(G)], where R is the wall radius, and for outward directed flux, f_(peak)(MHz) ≈0.8[-φ_(cω)(V)/B_z(G)]. These results may provide guidance for the construction of the correct theory of asymmetry-induced transport.
机译:早就知道,不对称的电场和磁场会在Malmberg-Penning阱中产生径向传输,并且已经做了很多工作来了解这种传输。我们的方法是将变频电不对称应用于低密度电子,并测量作为半径r的函数的径向粒子通量Γ。低粒子密度消除了许多等离子体模式(它们具有自己的频率依赖性),使我们能够专注于传输物理学。通常的方位角E x B漂移由偏置的中心线保持,并且这种布置还允许我们通过调整轴向磁场B_z或中心线的偏置φ_(cω)独立地改变漂移频率ω_R。为了应用由单个傅立叶模(n,l,ω)组成的不对称性,最多使用40个壁扇形,其中n是轴向波数,l是方位波数,ω是不对称频率。在目前的实验中,我们改变ω,n,φ_(cω)和B_z。随着ω的变化,粒子通量显示出与共振粒子理论所预测的共振相似的共振。与理论定性一致,该共振峰f_(peak)k的峰值频率随ω_R增大而随n变化,但是当进行定量比较时,fpetlk的实验值与理论预测的值不匹配。取而代之的是,f_(peak)对φ_(cω),B_z和r的依赖性遵循简单的经验缩放定律:对于向内定向通量,f_(peak)(MHz)≈[-Rφ_(cω)(V)/ rB_z( G)],其中R是壁半径,对于向外的通量,f_(peak)(MHz)≈0.8[-φ_(cω)(V)/ B_z(G)]。这些结果可为构建正确的非对称诱导输运理论提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号