【24h】

The exploration of new methods for learning in binary Boltzmann machines

机译:二元玻尔兹曼机器学习新方法的探索

获取原文
获取原文并翻译 | 示例

摘要

Exact inference for Boltzmann machines is computationally expensive. One approach to improving tractability is to approximate the gradient algorithm. We describe a new way of doing this which is based on Bahadur's representation of the multivariate binary distribution (Bahadur, 1961). We compare the approach, for networks with no unobserved variable, to the "mean field" approximation of Peterson and Anderson (1987) and the approach of Kappen and Rodriguez (1998), which is based on the linear response theorem. We also investigate the use of the pair-wise association cluster method (Tanaka and Morita, 1995).
机译:玻尔兹曼机的精确推论在计算上是昂贵的。一种提高易处理性的方法是近似梯度算法。我们基于Bahadur对多元二元分布的表示(Bahadur,1961)描述了一种新的实现方法。对于没有观测变量的网络,我们将其与Peterson和Anderson(1987)的“平均场”近似以及基于线性响应定理的Kappen和Rodriguez(1998)的方法进行比较。我们还研究了成对关联聚类方法的使用(Tanaka和Morita,1995)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号