首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >Dictionary based reconstruction and classification of randomly sampled sensor network data
【24h】

Dictionary based reconstruction and classification of randomly sampled sensor network data

机译:基于字典的随机采样传感器网络数据重构和分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a method for recovering and classifying WSN data while minimizing the number of samples that need to be acquired, processed, and transmitted. The problem is formulated according to the recently proposed framework of Matrix Completion (MC), which asserts that a low rank matrix can be recovered from a small number of randomly sampled entries. The application of MC in WSN data is motivated by the assumption that sensory data exhibit intra-sensor correlations and that these data can be represented using known examples. We formulate the problem as that of recovering the low rank measurement matrix by encoding the contributions of known examples, the dictionary elements, for reconstructing and classifying the data. Experimental results using artificial data suggest that the proposed scheme is able to accurately reconstruct and classify the sensory data from a small number of measurements.
机译:在本文中,我们提出了一种在最小化需要获取,处理和传输的样本数量的同时对WSN数据进行恢复和分类的方法。该问题是根据最近提出的矩阵完成(MC)框架提出的,该框架断言可以从少量的随机采样条目中恢复低秩矩阵。 MC在WSN数据中的应用是基于以下假设:感觉数据呈现出传感器内相关性,并且可以使用已知示例表示这些数据。我们将问题表述为通过对已知示例(字典元素)的贡献进行编码来恢复低秩测量矩阵,以重构和分类数据。使用人工数据的实验结果表明,所提出的方案能够从少量测量结果中准确地重建和分类感觉数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号