首页> 外文会议>International Semiconductor Device Research Symposium;ISDRS '09 >Improved morphology and bias stress study of a naphthalenetetracarboxylic diimide bottom contact field effect transistor
【24h】

Improved morphology and bias stress study of a naphthalenetetracarboxylic diimide bottom contact field effect transistor

机译:萘四甲酸二酰亚胺底部接触场效应晶体管的改进形态和偏应力研究

获取原文

摘要

Organic thin film field effect transistors (OFETs) have attracted considerable interest for use in a number of applications such as flexible active matrix displays, chemical sensors, radio frequency identification tags and labels, smart cards, and large-area logic circuits. OFETs have been studied in one of two configurations- top contact and bottom contact. Historically, many reports have illustrated the characteristics of bottom contact OFETs based on p-channel materials such as pentacene, copper phthalocyanine (CuPc) and sexthiophene in which holes are the majority carriers. However, very few studies have investigated n-channel organic semiconductor growth on substrates with prepatterned OFET metal contacts, relevant to bottom-contact devices. The investigation and development of materials that can be used in n-channel organic transistors, particularly those that can be operated in air, is crucial for the development of practical organic electrics, such as the most power-efficient families of logic elements called “complementary” circuits, in which both hole — carrying (p- channel) and electron carrying (n-channel) semiconductors are required8–10. In this study, bottom contact OFETs with various surface treatments based on 1, 4, 5, 8-naphthalene-teracarboxylic di-imide (NTCDI) derivatives with three different fluorinated N-substituents, systematically investigated with a particular emphasis on the interplay between the morphology of the organic semiconductor films and the electrical device properties. The topography of the NTCDI bottom contact device without any surface treatment was first characterized by AFM (Fig. 1). It can be observed that the growth of NTCDI films on Si/SiO2 substrates is dominated by crystalline grain structures, however their growth on bare gold is dominated by a dewetting resulting in a rough and amorphous film. A clear “gap” is formed at the interface between Si/SiO2 and Au substrates. In order to overcome the morphology limitations, different methods have been studied: 1) surface chemical modifications of Au electrode and Si/SiO2 substrates are applied to improve the morphology in the OFET channel close to the electrode edge. Because SAM preparation normally is time consuming and some SAM-forming thiols have unpleasant odors, we also investigated an alternative means of improving this near-contact NTCDI morphology without SAM modification, namely, spin coating a thin layer of insulating polymer on the gate-gate dielectric substrate. 2) semiconductor-contact thickness ratios are optimized to allow charge injection through larger interface areas. AFM images of the NTCDI bottom contact devices with surface treatment are shown in Fig. 2. It can be observed that the relatively unstructured film is still grown on top of the gold electrodes and the terrace crystal structure was formed on the silicon substrate. However, compared to the AFM image of the untreated F15-NTCDI device, it is very difficult to detect any “gap” area at the interface between SiO2 and the Au electrode. Based on a series of treatments, a large range of performances of bottom contact side-chain-fluorinated NTCDI OFETs (mobility from 1×10-6 to 8×10-2 cm2/Vs, on/off ratio from 102 to 105) were obtained. The surface treatments enabled systems that showed essentially OFET activity to perform nearly as well as top contact devices. In addition, for the fresh bottom contact NTCDI device, the effect of gate bias stress on the tens-of-minutes time scale, during which the threshold voltage (Vt) shifted and relaxed with similar time constants, was observed.
机译:有机薄膜场效应晶体管(OFET)在许多应用中引起了极大的兴趣,例如柔性有源矩阵显示器,化学传感器,射频识别标签和标签,智能卡以及大面积逻辑电路。已经以两种配置之一-顶部接触和底部接触-对OFET进行了研究。从历史上看,许多报告已经说明了基于p沟道材料(例如并五苯,酞菁铜(CuPc)和六聚噻吩)的底部接触式OFET的特征,其中空穴是主要的载流子。然而,很少有研究研究在具有底面接触器件的具有预图案化的OFET金属触点的基板上n沟道有机半导体的生长。研究和开发可用于n沟道有机晶体管的材料,特别是可在空气中工作的材料,对于开发实用的有机电子至关重要,例如称为“互补”的最节能的逻辑元件系列。电路,其中需要空穴传输(p沟道)半导体和电子传输(n沟道)半导体 8-10 。在这项研究中,系统地研究了基于1,3,4,5,8-萘-叔羧酸二亚胺(NTCDI)衍生物与三种不同氟化N取代基的各种表面处理的底部接触OFET,系统地研究了它们之间的相互作用。有机半导体膜的形态和电气器件性能。未经AFM处理的未经任何表面处理的NTCDI底部接触装置的形貌首先由AFM表征(图1)。可以观察到,NTCDI膜在Si / SiO 2 衬底上的生长主要由晶粒结构决定,但是它们在裸金上的生长主要受去湿作用的影响,从而形成粗糙的非晶膜。在Si / SiO 2 与Au衬底之间的界面处形成清晰的“间隙”。为了克服形态学上的局限性,研究了多种方法:1)对Au电极和Si / SiO 2 基体进行表面化学修饰,以改善靠近电极边缘的OFET通道的形貌。 。由于SAM的制备通常很耗时,并且一些形成SAM的硫醇具有难闻的气味,因此,我们还研究了无需进行SAM改性即可改善这种近接触NTCDI形态的替代方法,即在栅极上浇铸一层绝缘聚合物薄层电介质基板。 2)优化半导体接触厚度比,以允许通过较大的界面区域注入电荷。经过表面处理的NTCDI底部接触器件的AFM图像如图2所示。可以观察到,相对未结构化的膜仍在金电极的顶部生长,并且在硅基板上形成了梯形晶体结构。但是,与未经处理的F15-NTCDI器件的AFM图像相比,很难检测到SiO 2 与Au电极之间的界面处的任何“间隙”区域。基于一系列处理,底部接触侧链氟化NTCDI OFET的性能范围很大(迁移率从1×10 -6 到8×10 -2 cm 2 / Vs,开/关比从10 2 到10 5 )。表面处理使基本上表现出OFET活性的系统的性能几乎与顶部接触设备一样好。此外,对于新鲜的底部接触式NTCDI器件,在数十分钟的时间尺度上观察到了栅极偏置应力的影响,在此期间,阈值电压(Vt)以相似的时间常数移动和放松。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号