首页> 外文会议>Selected topics in system science and simulation in engineering >Application of Pattern Recognition Method in Classifying Power System Transient Disturbance
【24h】

Application of Pattern Recognition Method in Classifying Power System Transient Disturbance

机译:模式识别方法在电力系统暂态干扰分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Power system transient can cause serious damage to main power system apparatus and sensitive loads. There are many causes of power system transient including capacitor bank switching, switching of large inductive loads and lightning. This paper discusses the application of pattern recognition method, namely Support Vector Machine (SVM) to classify the cause of transient disturbance in power system. Two types of feature extractions are applied to provide the inputs to the SVM, i.e. the minimum and maximum peak voltage values and the wavelet energy level of the transients. The IEEE 30 bus system is modeled using the Power System Computer Aided Design (PSCAD) software to generate different type of transient data caused by capacitor switching and lightning. Feature extraction is performed using discrete wavelet transform (DWT) analysis. The results showed that the performance of the feature extraction using maximum and minimum peak voltage values is superior (80%) as compared to the wavelet energy (54%) to classify the cause of the transient.
机译:电力系统瞬变会严重损坏主电力系统设备和敏感负载。电力系统瞬变的原因有很多,包括电容器组切换,大电感负载的切换和雷电。本文讨论了模式识别方法即支持向量机(SVM)在电力系统暂态扰动原因分类中的应用。应用了两种类型的特征提取来为SVM提供输入,即最小和最大峰值电压值以及瞬态的小波能级。使用电源系统计算机辅助设计(PSCAD)软件对IEEE 30总线系统进行建模,以生成由电容器切换和雷电引起的不同类型的瞬态数据。使用离散小波变换(DWT)分析执行特征提取。结果表明,与使用小波能量(54%)分类瞬态原因相比,使用最大和最小峰值电压值进行特征提取的性能更好(80%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号