首页> 外文会议>Security engineering and intelligence informatics >Improving the Efficiency of Elliptic Curve Scalar Multiplication Using Binary Huff Curves
【24h】

Improving the Efficiency of Elliptic Curve Scalar Multiplication Using Binary Huff Curves

机译:使用二进制Huff曲线提高椭圆曲线标量乘法的效率

获取原文
获取原文并翻译 | 示例

摘要

In 2010, Joye et. al brought the so-called Huff curve model, which was originally proposed in 1948 for the studies of diophantine equations, into the context of elliptic curve cryptography. Their initial work describes Huff curves over fields of large prime characteristic and details unified addition laws. Devigne and Joye subsequently extended the model to elliptic curves over binary fields and proposed fast differential addition formulas that are well-suited for use with the Montgomery ladder, which is a side-channel attack resistant scalar multiplication algorithm. Moreover, they showed that, in contrast to Huff curves over prime fields, it is possible to convert (almost) all binary Weierstrass curves into Huff form. We have implemented generalized binary Huff curves in software using a differential Montgomery ladder and detail the implementation as well as the optimizations to it. We provide timings, which show speed-ups of up to 7.4% for binary NIST curves in Huff form compared to the reference implementation on Weierstrass curves. Furthermore, we present fast formulas for mapping between binary Weierstrass and generalized binary Huff curves and vice versa, where in the back conversion step an implicit y-coordinate recovery is performed. With these formulas, the implementation of the differential Montgomery ladder on Huff curves does not require more effort than its counterpart on Weierstrass curves. Thus, given the performance gains discussed in this paper, such an implementation is an interesting alternative to conventional implementations. Finally, we give a list of Huff curve parameters corresponding to the binary NIST curves specified in FIPS 186-3.
机译:2010年,乔伊等人。他等人将所谓的霍夫曲线模型(Huff curve model)引入了椭圆曲线密码术,该模型最初是在1948年提出的,用于研究双色子方程。他们的最初工作描述了具有较大主要特征的场的霍夫曲线,并详细说明了统一的加法律。随后,Devigne和Joye将模型扩展到二进制场上的椭圆曲线,并提出了非常适合与Montgomery阶梯配合使用的快速微分加法公式,该公式是一种抗边通道攻击的标量乘法算法。此外,他们表明,与素数场上的霍夫曲线相反,可以将(几乎)所有二元Weierstrass曲线转换为霍夫形式。我们已经使用差分蒙哥马利阶梯在软件中实现了通用的二进制霍夫曲线,并详细介绍了实现方法及其优化方法。我们提供的计时显示,与Weierstrass曲线上的参考实现相比,霍夫形式的二进制NIST曲线的加速高达7.4%。此外,我们提出了在二进制Weierstrass与广义二进制Huff曲线之间进行映射的快速公式,反之亦然,其中在反向转换步骤中执行隐式y坐标恢复。使用这些公式,在霍夫曲线上实施微分蒙哥马利阶梯不需要比在魏尔斯特拉斯曲线上的相应蒙蒙费力。因此,考虑到本文讨论的性能提升,这种实现是常规实现的有趣替代。最后,我们给出了与FIPS 186-3中指定的二进制NIST曲线相对应的Huff曲线参数列表。

著录项

  • 来源
  • 会议地点 Regensburg(DE)
  • 作者单位

    Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology (TUG), Inffeldgasse 16a, 8010 Graz, Austria;

    Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology (TUG), Inffeldgasse 16a, 8010 Graz, Austria;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号