首页> 外文会议>Scientific and statistical database management >Cor-Split: Defending Privacy in Data Re-publication from Historical Correlations and Compromised Tuples
【24h】

Cor-Split: Defending Privacy in Data Re-publication from Historical Correlations and Compromised Tuples

机译:Cor-Split:通过历史关联和受损的元组捍卫数据重新发布的隐私

获取原文
获取原文并翻译 | 示例

摘要

Several approaches have been proposed for privacy preserving data publication. In this paper we consider the important case in which a certain view over a dynamic dataset has to be released a number of times during its history. The insufficiency of techniques used for one-shot publication in the case of subsequent releases has been previously recognized, and some new approaches have been proposed. Our research shows that relevant privacy threats, not recognized by previous proposals, can occur in practice. In particular, we show the cascading effects that a single (or a few) compromised tuples can have in data re-publication when coupled with the ability of an adversary to recognize historical correlations among released tuples. A theoretical study of the threats leads us to a defense algorithm, implemented as a significant extension of the m-invariance technique. Extensive experiments using publicly available datasets show that the proposed technique preserves the utility of published data and effectively protects from the identified privacy threats.
机译:已经提出了几种用于隐私保护数据发布的方法。在本文中,我们考虑了重要的情况,其中必须在动态数据集的历史记录中多次释放特定视图。先前已认识到在后续发行中用于单次发布的技术不足,并且已经提出了一些新方法。我们的研究表明,在实践中可能会发生以前的提案未认识到的相关隐私威胁。特别是,我们展示了一个(或几个)受损的元组在与对手识别已发布的元组之间的历史关联的能力相结合时,在数据重新发布中可能具有的级联效应。对威胁的理论研究使我们得出了一种防御算法,该算法被实现为m不变性技术的重要扩展。使用公开可用的数据集进行的大量实验表明,所提出的技术保留了已发布数据的实​​用性,并有效地保护了已识别的隐私威胁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号