首页> 外文会议>SBR LARS Robocontrol 2014: Part of the Joint Conference on Robotics and Intelligent Systems >Automated Traffic Sign Recognition System Using Computer Vision and Support Vector Machines
【24h】

Automated Traffic Sign Recognition System Using Computer Vision and Support Vector Machines

机译:使用计算机视觉和支持向量机的自动交通标志识别系统

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the initial design of a computer vision application to recognize regulatory traffic signs vertically installed on Colombian roads using machine learning. This application is conceived as a module of a driver assistance system under development, and an autonomous vehicle adapted to the local infrastructure. The application was trained and tested with official synthetic images provided by the National Ministry of Transport. These images were modified with chromatic and geometric changes to emulate fluctuations in illumination, vantage point, and ageing. Resulting images were resized to 48 × 48 pixels, and the raw intensity planes in the Hue-Saturation-Intensity color model were reshaped to obtain feature vectors with 2304 attributes each. In total, forty seven binary classifiers were trained using Support Vector Machines under a one-versus-all classification scheme. These classifiers were directly combined into a multi-class classification system. This paper reports the methodology used to collect the data, configure, train, and measure the performance of classifiers working isolated and collectively.
机译:本文介绍了一种计算机视觉应用程序的初始设计,该应用程序可以使用机器学习识别垂直安装在哥伦比亚道路上的管制交通标志。该应用被认为是正在开发的驾驶员辅助系统的模块,以及适合于当地基础设施的自动驾驶汽车。该应用程序经过了国家运输部提供的官方合成图像的培训和测试。这些图像经过色彩和几何变化修饰,以模拟照明,有利位置和老化的波动。将生成的图像调整为48×48像素的大小,并对Hue-Saturation-Intensity颜色模型中的原始强度平面进行整形,以获得每个具有2304个属性的特征向量。总共使用支持向量机在“一对多”分类方案下对47个二元分类器进行了训练。这些分类器直接组合成一个多分类系统。本文报告了用于收集数据,配置,训练和衡量分类器孤立地和集体地工作的性能的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号