首页> 外文会议>Satellite data compression, communications, and processing XI >Skeleton-based Human Action Recognition Using Multiple Sequence Alignment
【24h】

Skeleton-based Human Action Recognition Using Multiple Sequence Alignment

机译:使用多序列比对的基于骨架的人类动作识别

获取原文
获取原文并翻译 | 示例

摘要

Human action recognition and analysis is an active research topic in computer vision for many years. This paper presents a method to represent human actions based on trajectories consisting of 3D joint positions. This method first decompose action into a sequence of meaningful atomic actions (actionlets), and then label actionlets with English alphabets according to the Davies-Bouldin index value. Therefore, an action can be represented using a sequence of actionlet symbols, which will preserve the temporal order of occurrence of each of the actionlets. Finally, we employ sequence comparison to classify multiple actions through using string matching algorithms (Needleman-Wunsch). The effectiveness of the proposed method is evaluated on datasets captured by commodity depth cameras. Experiments of the proposed method on three challenging 3D action datasets show promising results.
机译:多年来,人类动作识别和分析一直是计算机视觉领域的活跃研究课题。本文提出了一种基于由3D关节位置组成的轨迹来表示人类动作的方法。此方法首先将动作分解为一系列有意义的原子动作(actionlet),然后根据Davies-Bouldin索引值用英语字母标记actionlet。因此,可以使用一系列小动作符号来表示一个动作,这将保留每个小动作发生的时间顺序。最后,我们使用序列比较通过字符串匹配算法(Needleman-Wunsch)对多个动作进行分类。在商品深度相机捕获的数据集上评估了该方法的有效性。所提出的方法在三个具有挑战性的3D动作数据集上进行的实验显示出令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号