首页> 外文会议>Satellite data compression, communications, and processing IX >An efficient classification by signal subspace projection and partial filtering for hyperspectral images
【24h】

An efficient classification by signal subspace projection and partial filtering for hyperspectral images

机译:通过信号子空间投影和部分滤波对高光谱图像进行有效分类

获取原文
获取原文并翻译 | 示例

摘要

In this study, we propose an efficient classification which combines signal subspace projection (SSP) and partial filtering technique for hyperspectral images. To reduce the computation complexity in image classification, we exploit high degree correlations in spectral and spatial domains. During training process, image bands are first partitioned into several groups for each desired class by Maximum Correlation Band Clustering (MCBC) approach. Then, we design partial filters for each band group by SSP approach. Finally, the SSP-based partial filtering (SSPPF) are combined using corresponding weights for each class. For real image classification, simulations validate the proposed SSPPF can achieve the performance of SSP with less computation complexity. Generally, the proposed method requires only 1/k~2 computations of SSP, if image is partitioned into k groups.
机译:在这项研究中,我们提出了一种有效的分类方法,该方法将信号子空间投影(SSP)和部分滤波技术结合在一起用于高光谱图像。为了减少图像分类中的计算复杂性,我们在光谱和空间域中利用了高度相关性。在训练过程中,图像带首先通过最大相关带聚类(MCBC)方法针对每个所需的类别分为几组。然后,我们通过SSP方法为每个频带组设计局部滤波器。最后,使用针对每个类别的相应权重组合基于SSP的部分过滤(SSPPF)。对于真实的图像分类,仿真验证了所提出的SSPPF可以以较少的计算复杂度实现SSP的性能。通常,如果将图像划分为k组,则所提出的方法仅需要SSP的1 / k〜2计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号