【24h】

Mining Associations for Interface Design

机译:接口设计的采矿协会

获取原文
获取原文并翻译 | 示例

摘要

Consumer research has indicated that consumers use compensatory and non-compensatory decision strategies when formulating their purchasing decisions. Compensatory decision-making strategies are used when the consumer fully rationalizes their decision outcome whereas non-compensatory decision-making strategies are used when the consumer considers only that information which has most meaning to them at the time of decision. When designing online shopping support tools, incorporating these decision-making strategies with the goal of personalizing the design of the user interface may enhance the overall quality and satisfaction of the consumer's shopping experiences. This paper presents work towards this goal. The authors describe research that refines a previously developed procedure, using techniques in cluster analysis and rough sets, to obtain consumer information needed in support of designing customizable and personalized user interface enhancements. The authors further refine their procedure by examining and evaluating techniques in traditional association mining, specifically conducting experimentation using the Eclat algorithm for use with the authors' previous work. A summary discussing previous work in relation to the new evaluation is provided. Results are analyzed and opportunities for future work are described.
机译:消费者研究表明,消费者在制定购买决策时会使用补偿性和非补偿性决策策略。当消费者完全合理化其决策结果时使用补偿性决策策略,而当消费者仅在决策时考虑对他们最有意义的信息时使用非补偿性决策策略。在设计在线购物支持工具时,以个性化用户界面设计为目标并入这些决策策略可以提高总体质量和消费者购物体验的满意度。本文介绍了朝着这个目标的工作。作者描述了使用聚类分析和粗糙集技术来改进以前开发的程序的研究,以获得支持设计可定制和个性化用户界面增强所需的消费者信息。作者通过检查和评估传统关联挖掘中的技术来进一步完善他们的程序,特别是使用Eclat算法进行实验以用于作者以前的工作。提供了讨论与新评估相关的先前工作的摘要。分析结果并描述未来工作的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号